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Abstract

Previous studies of strategic social interaction in game
theory have predominantly used games with clearly-
defined turns and limited choices. Yet, most real-world
social behaviors involve dynamic, coevolving decisions
by interacting agents, which poses challenges for cre-
ating tractable models of behavior. We have previously
shown that it is possible to quantify the instantaneous
dynamic coupling in strategic human game play when
paired against both human and artificial opponents. Here,
we apply this coupling model to human neuroimaging
data. We observe that the rTPJ and dmPFC exhibit in-
creased activation when playing against a human oppo-
nent compared to a computer opponent, both immedi-
ately before and after game play. Moreover, a network
of regions frequently associated with social cognition,
including the dlPFC and dmPFC, was found to correlate
with player coupling metrics derived from our model for
both human and computer opponents. These findings
suggest that prefrontal cortex may play a role in track-
ing the relationship between oneself and other dynamic
agents, regardless of whether those agents are perceived
to be human.
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Introduction

Over the last fifteen years, game theory has been founda-
tional in establishing a neuroscience of strategic decision
making (Camerer, 2011). Paradigms like Matching Pen-
nies, the Trust/Ultimatum Game, and Prisoner’s Dilemma have
used simple choices in highly standardized contexts to rig-
orously characterize the psychological processes underlying
trust, altruism, and inequity aversion, drawing on literature
detailing mathematically normative behavior (Camerer, 2011;
Mookherjee & Sopher, 1994). Yet many of the strengths
of these paradigms—discrete choices, turn-taking, known
payouts—run counter to our experience in real-world actions
like negotiation, in which participants respond to one another

in real-time, their strategies coevolving amid ambiguously de-
fined incentives.

Here, we leverage a recently published computational
modeling framework (McDonald, Broderick, Huettel, & Pear-
son, 2019) that borrows from recent advances in reinforce-
ment learning (Sutton & Barto, 1998; Silver et al., 2016;
Jaderberg et al., 2018) and nonparametric Bayesian mod-
eling (Rasmussen & Williams, 2006; Hensman, Fusi, &
Lawrence, 2013) to capture these social dynamics in a more
externally valid, large state-action space. Our approach mod-
els behavior in a dynamic, competitive motor decision-making
task played against both human and computer opponents and
is able to capture strategic differences across participants, tri-
als, and even individual moments within trials. This paradigm
generates a rich complexity in individuals’ behavior that can be
succinctly described by individualized, instantaneous policy
functions, facilitating analysis at multiple timescales of interest
and types of neural data. We conclude by applying our com-
putational model of behavior to neuroimaging data to reveal
distinct brain regions that are recruited for strategic decision-
making modulated by social identity of one’s opponent in the
task.

Experimental Paradigm

We adapted a zero-sum dynamic control task (Iqbal et al.,
2019), inspired by a penalty shot in hockey, see Figure 1. The
task involved two players: an experimental participant (n =
82) who controlled an on-screen circle (the “puck”) and an-
other agent who controlled an on-screen bar (the “goalie”).
Both players were able to move their avatars using a joystick.
The participant controlling the puck attempted to cross a goal
line located at the right end of the screen, while the goalie
attempted to block the puck. On half of the trials, the experi-
mental participant played against a human; on the other half
of trials, the participant played against a computer-controlled
goalie. The identity of the goalie opponent (i.e. human or
computer goalie) was randomly selected each trial and was
disclosed to the participant before each trial began. Our task
was incentive-compatible: both the experimental participant
and the human goalie were rewarded in monetary bonuses

705

This work is licensed under the Creative Commons Attribution 3.0 Unported License.

To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0



based on how frequently each player won.
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Figure 1: A: Task progression: Following a jittered fixation cue,
text indicated the identity of the opponent on the upcoming
trial for 2 seconds. Play commenced after a variable delay dur-
ing which the screen displayed a fixation cue. At the conclu-
sion of each trial, which lasted roughly 1.5 seconds, colored
text indicated the winner (green “Win” if the participant won;
red “Loss” if the participant lost) for 1.5 seconds. B: Game
play on a single trial. The puck moved from left to right at con-
stant horizontal velocity. The bar was only allowed to move
vertically, but is depicted as moving from the right side of the
screen inward toward the goal line for visualization purposes.
C and D: All trajectories for Participant 3 (C) and Participant
4 (D), demonstrating the heterogeneity observed across par-
ticipants. Subjects exhibited significant variability in both on
screen positions’ visited and trajectory shape: Participant 3 is
much more consistent in game play, while Participant 4 was
more variable. Trials played against the human opponent are
displayed in blue. Trials played against the computer opponent
are in green.

Predicting Change Points
As we have previously shown (McDonald et al., 2019), sub-
jects exhibited considerable variability in game play (Fig-
ure 1C,D). Despite the fact that participants could produce
smooth trajectories by controlling the vertical velocity of the
puck, we observed that most trials could be approximated
as a sequence of maximal velocity segments separated by
change-points, which we defined as either an initial change of
the vertical velocity away from 0 or a subsequent change in
the sign of vertical velocity. We thus chose to define each trial
as defined by the set of such change points. In this approxi-
mation, a player’s strategy could be fully characterized by the
probability of a change point at each moment.

Viewed through the lens of reinforcement learning, the de-
cision of whether to switch direction at time t is an action, at ,
and the probability of this action given a state of the world st is
given by the policy function: Π(at ,st ,ω) = p(at |st ,ω), where
we let st denote a vector of predictors at each time point and

ω is a binary variable indicating the opponent’s identity (com-
puter = 0, human = 1) (Sutton & Barto, 1998). We define the
action space as a single binary variable, with 1 indicating a
change in direction and a 0 indicating continuation along the
current trajectory. However, the state s remains continuous
and includes 7 predictor variables: the x and y positions of the
puck, the y position of the bar, their respective vertical veloc-
ities, the time since the occurrence of the last change point
(normalized to 1 by dividing by total trial length), and an op-
ponent experience variable that ranged from 0 (first trial) to 1
(last trial) that was specific to each opponent and reflected po-
tential strategic adaptation over the course of the experiment.
We fit each subject’s behavioral data with a Gaussian Process
(GP) classification model, which offers competitive modeling
performance coupled with uncertainty estimation and differen-
tiability, both of which we leverage in our sensitivity analyses.
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Figure 2: Observed sensitivity to opponent actions in both op-
ponent conditions, for the selected four participants (A,B,C,D).
Shaded regions indicate 95% credible intervals. Blue line and
shaded region correspond to the human opponent condition,
green to the computer opponent.

Sensitivity Metric

We next sought to quantify how much participants’ switching
behavior changed as a function of the opponent’s actions. Be-
cause our change point policy model is based on a smooth
Gaussian Process, we can quantify this sensitivity using gra-
dients of the GP f = Φ−1(π) with respect to the opponent’s
position and velocity. We then used these gradients to define
a moment-by-moment sensitivity index. Since the gradients of
the GP measure the degree to which small changes in the cur-
rent game state affect the participant’s probability of changing
course, gradients with respect to the opponent’s position and
velocity capture the degree to which the participant’s current
behavior is sensitive to the opponent’s actions. For each in-
put variable, we defined a sensitivity as the squared norm of
the gradient of the GP along that direction: νi = ‖η−1

i ∇i f‖2,
with i = 1 . . .8 indexing (s,ω), ∇i the gradient with respect to
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the ith variable, and η
−1
i representing the ith diagonal of the

posterior covariance of ∇ f . Further, to capture overall sen-
sitivity of the puck to the goalie’s actions, we combined the
sensitivities to goalie position and velocity into a single metric:

ς = ‖L−1
∇x̃ f (x)‖2 (1)

with x̃ ≡ (ygoalie,vgoalie) and L the Cholesky factor (Σ = L>L)
of the covariance (Σ) of ∇x̃ f .

We observed large within-subject heterogeneity with regard
to what extent sensitivity to opponent action varies throughout
the trial and changes as a function of opponent identity, see
Figure 2. With this instantaneous regressor operationaliz-
ing the dynamic coupling between opponents, we next sought
to apply this behavioral model to neuroimaging data and de-
termine the neural structures that play crucial roles in social
cognition and decision-making in our paradigm.

Neural Structures of Strategic Social Cognition
We wanted to investigate whether strategically playing against
the human or computer opponent yielded differences in BOLD
activity. To this end, we analyzed fMRI data for (n=72) subjects
from the original (n=82) subjects from the behavioral sample
that met motion quality thresholds. Our design matrix included
the onset and duration of three distinct phases of each trial: 1)
the opponent screen, in which participants were notified whom
they would be playing against, 2) the game play period, and 3)
the outcome screen, in which the result of the game play (win
or loss) was displayed. Our design matrix also included the
opponent identity of each trial (either the human or computer
opponent), and each trial’s mean logged opponent sensitivity.
According to a GLM analysis, we observed increased activa-
tion of the right temporoparietal junction (rTPJ) when the sub-
jects were told they would play the upcoming trial against a
human, as opposed to the computer opponent (Figure 3A). In
contrast, we observed increased activity for human trials rela-
tive to computer trials selectively in the dorsomedial prefrontal
cortex (dmPFC) during the outcome screen (Figure 3B).
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Figure 3: A: GLM results during the Opponent Screen period
for the Human - Computer Opponent contrast, which features
rTPJ activation (MNI coordinates: [x=52, y=-48, z=24]). B:
GLM results during the Outcome Screen period for the Hu-
man - Computer Opponent contrast, which features dmPFC
activation (MNI coordinates: [x=14, y=60, z=36]. Color scale
corresponds to z-statistic.

Neuroimaging of Opponent Sensitivity
We next asked whether any regions in the brain were paramet-
rically modulated by opponent sensitivity. Whole-brain analy-
ses revealed that BOLD activity in the dorsolateral prefrontal
cortex (dlPFC) was correlated with opponent sensitivity during
game play (Figure 4A). This corroborates findings in the so-
cial cognition literature and in monkey physiology that neurons
in the dlPFC encode update signals of outcome estimates in
a competitive game (Barraclough, Conroy, & Lee, 2004; Mc-
Namee, Liljeholm, Zika, & O’Doherty, 2015; Tsutsui, Graben-
horst, Kobayashi, & Schultz, 2016). Conversely, activity in the
dmPFC before the trial began predicted opponent sensitivity
during game play (Figure 4B). This demonstrates that pre-trial
activity in the dmPFC predicts how coupled one subjects are
with their opponents.
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Figure 4: A: Brain regions that are parametrically modulated
by opponent sensitivity during the Game Play period, which
features the dlPFC and left angular gyrus (MNI coordinates:
[x=-50, y=14, z=40]). B: dmPFC is predictive of the upcoming
trial’s opponent sensitivity during the opponent screen (pre-
trial) (MNI coordinates: [x=12, y=50, z=46]). Color scale cor-
responds to z-statistic.

Finally, we tested the hypothesis that the rTPJ is represent-
ing uniquely social signals when preparing to play against a
given opponent. We extracted the activation z-score from
over 70 standard regions of interests (ROIs) created from
the Harvard-Oxford Cortical and Subcortical atlases during
the opponent pre-trial screen. When separating these acti-
vation z-scores into human and computer trials, we see that
the rTPJ is the brain region that has the highest residual from
an orthogonal distance regression line (see Figure 5). This re-
sult suggests that rTPJ activity represents information relating
to opponent identity in a manner that is preferential to social
agents.

Discussion
Previous studies in social cognitive neuroscience have shown
that the rTPJ carries uniquely social signals about the rele-
vance of agents in the current environment (Carter, Bowling,
Reeck, & Huettel, 2012; Saxe & Wexler, 2005). We posit that
the rTPJ might be instrumental in signaling the presence of
a task-relevant social agent. Consistent with this, we find that
the rTPJ not only is significantly more active when preparing to
play against a social opponent rather than a nonsocial oppo-
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Figure 5: rTPJ has the highest ODR residual when regress-
ing each ROI’s human z-score activation against computer z-
score activation during both the pre-trial opponent screen.

nent, but also is the single brain region that displays the high-
est social bias, as defined by the highest residual difference
in an orthogonal distance regression plotting beta coefficients
from the rTPJ for both social and nonsocial opponents dur-
ing the pre-trial period. We also find that the dmPFC plays a
role in both representing the outcome of trials in our paradigm,
but also in predicting future opponent sensitivity. This also ac-
cords with existing literature suggesting that the dmPFC tracks
a simulated-other’s action prediction errors (Lee & Seo, 2016;
Suzuki et al., 2012) as well as strategizing during competitive
interactions (Rilling & Sanfey, 2011).

Together, these fMRI results suggest that brain regions in
the social cognition network including the rTPJ, dmPFC and
dlPFC play distinct and dissociable roles during evolving de-
cision contexts, with the rTPJ preferentially signaling when a
subject is informed they will interact with a social as opposed
to nonsocial agent, while the dmPFC is engaged with both
predicting opponent sensitivity before game play and prefer-
entially signaling when a win or loss outcome occurs after
playing with a social opponent, rather than a nonsocial oppo-
nent. This suggests a potential model in which investigators
can leverage the power of nonparametric methods for both
modeling the computational and neural mechanisms of dy-
namic decision-making against multiple opponent types, both
social and nonsocial in nature.
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Platt, M. L., & Pearson, J. M. (2019). Latent goal models for
dynamic strategic interaction. PLoS computational biology ,
15(3), e1006895.

Jaderberg, M., Czarnecki, W. M., Dunning, I., Marris,
L., Lever, G., Castaneda, A. G., . . . others (2018).
Human-level performance in first-person multiplayer games
with population-based deep reinforcement learning. arXiv
preprint arXiv:1807.01281.

Lee, D., & Seo, H. (2016). Neural basis of strategic decision
making. Trends in neurosciences, 39(1), 40–48.

McDonald, K. R., Broderick, W. F., Huettel, S. A., & Pearson,
J. M. (2019). Bayesian nonparametric models characterize
instantaneous strategies in a competitive dynamic game.
Nature communications, 10(1), 1808.

McNamee, D., Liljeholm, M., Zika, O., & O’Doherty, J. P.
(2015). Characterizing the associative content of brain
structures involved in habitual and goal-directed actions in
humans: a multivariate fmri study. Journal of Neuroscience,
35(9), 3764–3771.

Mookherjee, D., & Sopher, B. (1994). Learning behavior in
an experimental matching pennies game. Games and Eco-
nomic Behavior , 7 (1), 62–91.

Rasmussen, C. E., & Williams, C. K. (2006). Gaussian pro-
cess for machine learning. MIT press.

Rilling, J. K., & Sanfey, A. G. (2011). The neuroscience of
social decision-making. Annual review of psychology , 62,
23–48.

Saxe, R., & Wexler, A. (2005). Making sense of another mind:
the role of the right temporo-parietal junction. Neuropsy-
chologia, 43(10), 1391–1399.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van
Den Driessche, G., . . . others (2016). Mastering the game
of go with deep neural networks and tree search. nature,
529(7587), 484.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning:
An introduction. MIT press Cambridge.

Suzuki, S., Harasawa, N., Ueno, K., Gardner, J. L., Ichinohe,
N., Haruno, M., . . . Nakahara, H. (2012). Learning to simu-
late others’ decisions. Neuron, 74(6), 1125–1137.

Tsutsui, K.-I., Grabenhorst, F., Kobayashi, S., & Schultz, W.
(2016). A dynamic code for economic object valuation
in prefrontal cortex neurons. Nature communications, 7 ,
12554.

708


