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Abstract

Neural information flow (NIF) is a new framework for sys-
tem identification in neuroscience. NIF models represent
neural information processing systems as coupled brain
regions that each embody neural computations. These
brain regions are coupled to observed data specific to
that region via linear observation models. NIF models
are trained via backpropagation, directly leveraging the
neural signal as the loss. Trained NIF models are ac-
cessible for in silico analyses. Using a large-scale fMRI
video stimulation dataset and a feed-forward convolu-
tional neural network-based NIF model as an example
we show that, in this manner, we can estimate models
that learn meaningful neural computations and represen-
tations. Our framework is general in the sense that it can
be used in conjunction with any neural recording tech-
niques. It is also scalable, providing neuroscientists with
a principled approach to make sense of high-dimensional
neural datasets.
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Introduction

Uncovering the neural computations that subserve behaviour
and cognition is a major goal in neuroscience (Churchland &
Sejnowski, 1992). Arguably, true understanding of the brain
requires replicating biological neural information processing
in silico. The goal of neural system identification is to uncover
neural information processing systems from observed mea-
surements in response to environmental changes (Stanley,
2005; Wu, David, & Gallant, 2006). However, a generally
accepted method for deriving and recovering neural compu-
tations from observed brain data has not been proposed so
far. For sensory systems, relating hypothesized represen-
tations to hierarchical processing observed in brain activity
– with representation similarity analysis (RSA) or encoding
models (Naselaris, Kay, Nishimoto, & Gallant, 2011; van Ger-
ven, 2017) – is the currently most widely adapted method for
studying the hierarchy of neural information processing. Re-
markably, the current best representation hierarchies explain-
ing information processing along the ventral visual stream

can be extracted from externally trained convolutional neu-
ral networks (Kriegeskorte, 2015; Güçlü & van Gerven, 2015;
Yamins et al., 2014). However, the hypothesized feature rep-
resentations used in representation studies have been esti-
mated with artificially defined goals, such as discrete clas-
sification on the ImageNet competition. Furthermore, within
these commonly used analysis methods representations re-
main uncoupled and can not represent causal bottom-up and
top-down cognitive information flow between brain regions.
That is, they are lacking the coupling of distinct neural regions
commonly studied with effective connectivity methods. Estab-
lished techniques for uncovering effective connectivity such
as Dynamic Causal Modeling (DCM) are able to uncover this
causal coupling (Friston, Harrison, & Penny, 2003), but do not
capture the nature of information processing that drives the
interaction between brain regions.

We propose a new modeling framework combining the
power of neural network-based representations and effective
connectivity methods. The parameters of Neural Information
Flow (NIF) models are directly estimated on brain data. They
learn to generate neural data in regions of interest in response
to interactions between neural regions and/or sensory or be-
havioural input. They can be interpreted as synthetic (in silico)
brains that learn to capture the nonlinear computations taking
place in a real brain. Instead of modeling brain regions in an
isolated fashion, they take afferent information inputs into ac-
count (Haak et al., 2013).

In the following we outline the basic methodology of NIF
modeling. Using a large dataset acquired under naturalistic
video stimulation we demonstrate that the model is capable of
generating realistic brain measurements and that the compu-
tations captured in the model are biologically meaningful.

Methodology

The example architecture presented here is formulated within
a state-of-the-art neural network framework, using backprop-
agation for estimating its parameters. We represent the
information contained in an individual neural population as
tensor N that embodies activity in spatio-temporal receptive
fields. Voxel activity in the regarded region of interest is cou-
pled to N with spatial, temporal and channel observation mod-
els, and drives the parameter learning in the convolutional lay-
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Figure 1: Architecture of the example NIF model of the early visual system. Underneath the tensors resulting from the 3D convolution
operations (with 3D grayscale stimulus video patches being the input to the network) we state the size of each input space (x× y× t) to
the next layer. We use 3D video patches consisting of 3× 16 frames (covering three TRs of 700 ms each), pushed forwards in time by
∆t = 6 TR (4.2 s) to align them with the hemodynamic response. Multiple video patches are used to allow for voxel-specific differences in the
hemodynamic response peak (learned within WWW t ). The number of feature maps (channels) in each input space is printed in boldface, with the
stimulus (input) space consisting of a single channel (grayscale). Before any of the observed tensors we pass the input video patch through a
single-channel (3×3×1) convolutional layer without a nonlinearity, serving as a learnable linear preprocessing step that accounts for retinal
and LGN modulations. The voxel- and region-specific observation models consisting of the spatio-temporal weight vectors WWW x, WWW y and WWW t
tap into their specific tensor, with FFA and MT having their own tensors from V3 input for analysis purposes. Convolutional kernel sizes are
7×7×7 in the first convolutional layer (leading to the V1 tensor), and 3×3×3 for all other layers. After every convolution operation we apply
a sigmoid nonlinearity and spatial average pooling with 2×2×2 kernels. Before entering the WWW t observation models the temporal dimension
is average pooled so that each point t covers 1 TR. All weights in this model (colored blue) are learned by backpropagating the mean squared
error losses from univariately predicting the BOLD activity of the observed voxels influenced by the weight.

ers that produce N. N[i, :, :, :], a single spatio-temporal feature
map encodes the responsiveness to a local characteristic of
the input, such as a specifically oriented edge or coherent mo-
tion. Such specific local features arise within the NIF model
during training it on brain activity. Consequently, a tensor el-
ement can be interpreted as the response of one cortical col-
umn. Under the same interpretation, cortical hyper-columns
are represented by a sub-tensor storing the activations of all
the columns that respond to the same spatial location. As
in DCM, the coupling of regions is a choice of the experi-
menter, and can be neural or behavioural in nature. Specifics
of the neural network architecture are a design choice, al-
lowing feed-forward (only modeling nonlinear transformations
of the input), or recurrent (modeling lateral and top-down in-
teractions) regions. There is a natural limit on the complex-
ity (number of free parameters) of the neural architecture as
more complex models have increasing difficulties to learn ac-
curate generative models for the neural data.

Modeling information flow
NIF models assume that neural computations in a region op-
erate on its afferent inputs that reflect either sensory input or
neural activity in other brain regions. Effective connectivity
from a source region a to a sink region b is expressed as a
convolution between neural tensor Na and a tensor of synaptic
weights Wa→b. In other words, here the flow of cognitive infor-
mation is modeled using ND convolutions on afferent inputs.
Equation (1) shows an example afferent input model with two
spatial coordinates x and y, one temporal coordinate t and the
channel index cin. W thus contains spatio-temporal receptive
fields of the succeeding cortical columns. A 3D convolution is

performed on the spatial dimensions and the temporal dimen-
sion as follows:

(Na ?Wa→b)[cout,x,y, t] =

∑
cin,dx,dy,dt

Na[cin,x−dx,y−dy, t−dt]

Wa→b[cin,dx,dy,dt,cout] .

(1)

The information processing representation (activation) en-
coded by the j-th brain area is then a function of its afferent
input from brain area i:

N j = fff

(
N

∑
i=1

Ni ?Wi→ j +B j

)
. (2)

Here, fff is a nonlinear neural network activation function (ap-
plied element-wisely) and B j determines the bias. Using this
setup, we can model how neural populations respond to sen-
sory input, as well as to each other.

Observation models

To estimate the parameters of NIF models they are linked
to (predicting) brain activity measurements or behaviour (e.g.
motor behaviour). This prediction is done across a set of
learned weight vectors reading out the tensor N dimensions in
the framework of tensor decomposition (or, to be computation-
ally feasible, its low rank approximation). In the NIF modeling
example outlined here we learn to predict brain activity from
functional magnetic resonance imaging (fMRI) in response to
video stimuli. Let Y ∈ RK×T denote region-specific BOLD re-
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sponses of K voxels acquired over T time points. Our obser-
vation model is defined by

Y[k, t +∆t ] = ∑
c,x,y,t

N[c,x,y, t]WWW [c,x,y, t,k]+ ε[k] , (3)

where ε[k] is normally distributed measurement noise and ∆t
is a fixed temporal shift that sets a minimum BOLD signal de-
lay. To reduce the computational load of parameter estimation,
we use a factorized low-rank decomposition of WWW . That is,

WWW [c,x,y, t,k]≈WWW c[c,k]WWW t [t,k]
R

∑
r=1

WWW x,r[x,k]WWW y,r[y,k] . (4)

Here, WWW c[c,k] is the channel receptive field, WWW r,x[x,k] and
WWW r,y[y,k] are r spatial receptive fields (where R is the target
rank) and WWW t [t,k] is the temporal receptive field of the k-th
voxel. In our example the rank R is set to be 4 to allow for more
complex (e.g. diagonal) receptive fields. WWW r,x[x,k], WWW r,y[y,k]
and WWW t [t,k] are constrained to be positive by applying a soft-
max nonlinearity across the voxel-specific vector. The voxel-
specific channel observation model WWW c[c,k] learns sensitivity
of a voxel to specific feature channels, and can weight each
channel’s contribution positively or negatively. The estimated
voxel-specific observation models are interpretable. In our ex-
ample, the spatial weight vectors can be interpreted as the
population receptive field of a voxel. The temporal weight vec-
tor can model voxel-wise differences in the hemodynamic re-
sponse function.

The NIF example model presented here is illustrated and
described in Figure 1. To demonstrate the NIF framework
within reasonable computational load we downsampled the
spatial video size to 112× 112 pixels for training and trans-
formed them to grayscale. The model trained for 8 epochs.

Functional MRI data
The example model is trained on 3T whole-brain functional
magnetic resonance imaging (fMRI) data from a single human
participant (male, age 27.5 years) exposed to 23.3 h of spatio-
temporal and auditory naturalistic stimuli (episodes of BBC’s
Doctor Who (Davies, Gardner, Moffat, Young, & Collinson,
2005)). We collected data in a Siemens 3T MAGNETOM
Prisma system inside a 32-channel head coil (Siemens, Er-
langen, Germany). A T2*-weighted echo planar imaging pulse
sequence at a TR of 700 ms was used for rapid data acquisi-
tion of whole-brain volumes (64 transversal slices with a voxel
size of 2.4× 2.4× 2.4 mm3). We used a multiband-multi-
echo protocol with multiband acceleration factor of 8, TE of
39 ms and a flip angle of 75 degrees. Following common pro-
cedures in visual neural encoding studies we use a large set
of fMRI data from stimuli that have been presented once for
training (119.225 volumes), and a short resampled test set on
which we estimate quantitative predictive model performance
(1.031 volumes). The video episodes were presented on a
rear-projection screen with the Presentation software pack-
age, cropped to 698×732 pixels squares so that they covered
20◦ of the vertical and horizontal visual field. The participant’s

head position was stabilized within and across sessions by us-
ing a custom-made MRI-compatible headcast, along with fur-
ther measures such as extensive scanner training. The partic-
ipant had to fixate on a fixation cross in the center of the video.
Data collection was approved by the local ethical review board
(CMO regio Arnhem-Nijmegen, The Netherlands, CMO code
2014-288 with amendment NL45659.091.14) and was carried
out in accordance with the approved guidelines.

Results and observations
The trained NIF model can be analysed in multiple ways. We
focus on showing that it has learned meaningful and known
properties of the visual system.
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Figure 2: Histograms (normalized) of voxel-wise correlations be-
tween predicted and observed BOLD responses on the test set in
different observed brain regions.

Figure 2 shows the correlations between predicted and ob-
served brain activity on the test set for the voxels of all ROIs.
We can see that the NIF model indeed generates realistic
brain activity in response to unseen input stimuli (out of sam-
ple prediction), i.e. the objective of the model training has
been reached. We now focus on what the model has learned
within the weight matrices.

Figure 3: Frame 3 of the spatio-temporal channel weights of the V1
convolutional layer operating on the video input stimuli, learned on
neural data alone. For visualization, weights are clipped at the ex-
tremes and rescaled between 0 and 1.

Figure 3 shows the 64 channels (feature detectors) learned
within the tensor connected to V1 voxels. We see that within
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Figure 4: Examples of learned feature detectors over time. Many of
the channels learned from brain activity show temporal variety.

this principled and data driven method typically known fea-
ture detection mechanisms of V1 arise, namely Gabor fea-
ture detectors. Alongside with them many feature detectors
that can not be formulated as Gabors (but are reminiscent of
those arising within object recognition convolutional networks)
are learned. Several of these feature detectors show tempo-
ral variance. Figure 4 shows all frames of 3 of the temporally
variant feature detectors.

Retinotopy
The voxel-specific matrices WWW x and WWW y learn the spatial re-
ceptive fields of every voxel. Their outer product shows the
location of this receptive field on the current input space (e.g.
video space, feature map). A sensibly trained NIF model
should be expected to have learned basic retinotopy.

We determined the center of mass of the voxel-wise spa-
tial receptive fields and transformed them to polar coordinates
with the fixation point used as the fovea center. Eccentricity
and polar angle are projected onto cortical flat maps, as gen-
erated by pycortex (Gao, Huth, Lescroart, & Gallant, 2015),
in Figure 5. The annotated ROIs for V1, V2 and V3 have
been estimated with classical wedge and ring retinotopy. It be-
comes clear that reversal boundaries align well with the tradi-
tionally estimated ROI boundaries. The eccentricity matches
the expected fovea-periphery organization as well. The NIF
model thus learned sensible retinotopic characteristics of the
visual system.

Discussion and conclusions
To the best of our knowledge we have demonstrated for the
first time that biologically meaningful neural information pro-
cessing systems can be estimated directly from neural data
from naturalistic stimulation. NIF modeling provides us with
a principled approach to make sense of the high-resolution
large datasets that will be produced by continuing advances
in neurotechnology (Stevenson & Kording, 2011). NIF mod-
eling allows neuroscientists to specify hypotheses about neu-
ronal interactions and test these by quantifying how well the
resulting models explain observed measurements. We ex-
pect that (variants of) NIF models will provide new insights into
the principles and mechanisms that dictate neural information
processing in biological systems.
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(a) Retinotopy: Eccentricity

(b) Retinotopy: Polar angle

Figure 5: Retinotopy of significantly predictable voxels that arises
in the voxel-specific spatial observation matrices WWW x and WWW y within
the NIF model training example. There is a good fit between the
classical retinotopy and retinotopy estimated directly from naturalistic
spatiotemporal stimuli using the NIF model.
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