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Abstract
Humans possess the unique ability of combinatorial gen-
eralization in auditory perception: given novel audi-
tory stimuli, humans perform auditory scene analysis
and infer causal physical interactions based on prior
knowledge. Could we build a computational model that
achieves combinatorial generalization? In this paper, we
present a case study on box-shaking: having heard only
the sound of a single ball moving in a box, we seek to
interpret the sound of two or three balls of different ma-
terials. To solve this task, we propose a hybrid model
with two components: a neural network for perception,
and a physical audio engine for simulation. We use the
outcome of the network as an initial guess and perform
MCMC sampling with the audio engine to improve the re-
sult. Combining neural networks with a physical audio
engine, our hybrid model achieves combinatorial gener-
alization efficiently and accurately in auditory scene per-
ception.

Keywords: auditory scene analysis; combinatorial generaliza-
tion; physical simulation

Introduction
Humans engage with new auditory scenes every day, but we
manage to interpret them effortlessly. For example, when we
hear a mixture of sounds that we’ve never heard before—a
person talking, a bird singing and a train on tracks—we per-
ceive each component distinctly and clearly. How is this pos-
sible? We speculate that humans perceive complex mixtures
by composing previously heard sounds together, combinato-
rially. We refer to this hypothesized ability as combinatorial
generalization.

In recent years, researchers have developed multiple tools
to try to understand the perceptual world in the same way as
humans do. In both visual and auditory fields, neural net-
work have shown impressive perceptual abilities. However,
neural networks lack the ability of combinatorial generaliza-
tion: they cannot recognize categories for which they have not
been trained. Indeed, a neural network does not contain any
concepts in its ontology besides those in the training labels.
Therefore, we turn our attention to how humans achieve com-
binatorial generalization and attempt to build a computational
model for auditory scene perception.

Recent behavioral studies (Battaglia, Hamrick, & Tenen-
baum, 2013; Sanborn, Mansinghka, & Griffiths, 2013) suggest
that intuitive physics (the human perception of physics) may
be modeled using a probabilistic physics engine. Following
these seminal works, we built a hybrid inference engine which
frees us from the aforementioned restrictions of neural net-
works. The specific sampling algorithm that we use is MCMC
sampling with the Metropolis-Hastings acceptance rule. We
set up a box-shaking scenario in which a box containing multi-
ple balls, of potentially different materials, are shaking in a box
and the materials must be inferred. We generated synthetic
audio using an audio synthesis engine (described below); the
same engine is also used during sampling.

Our model consists of two parts. First, we use a neural net-
work for direct perception. We train the network using labeled
synthetic audio from a scene of shaking a box with only one
ball inside. We then use the network to obtain probabilistic
prediction of ball materials in scenes with two or three balls.
These estimates are used as an initial guess of the materi-
als. Second, we perform MCMC sampling to iteratively up-
date the balls’ materials, generate corresponding audio using
the physics engine, and compare the generated audio with
the observed audio with a perceptual distance—sound tex-
ture distance (McDermott & Simoncelli, 2011). A likelihood
function is used to decide whether we accept the new mate-
rial or not. After multiple steps, the outcome becomes stable
and achieves a high accuracy. Combining neural nets and
simulation-based sampling, our hybrid model achieves combi-
natorial generalization in physical auditory perception.

Related Work

Human auditory perception The fields of psychoacoustics
and auditory perception and cognition have a long history; see
(Kunkler-Peck & Turvey, 2000; Zwicker & Fastl, 2013) for re-
views.

Sound synthesis James, Barbič, and Pai (2006) proposed
a method for modal sound synthesis - approximating the vi-
brational modes of objects by solving the Helmholtz equa-
tion with the Boundary Element Method. Zhang, Wu, et al.
(2017) achieved large-scale sound synthesis and accelerated
the process to near real-time performance. We modified the
framework proposed by Zhang, Li, et al. (2017) and applied
controlled motion restriction to the object to apply a real shak-
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ing motion.

Analysis-by-synthesis Our method is related to attempts to
understand physical perceptual scenes with generative mod-
els, in other words, analysis-by-synthesis. Wu, Yildirim, Lim,
Freeman, and Tenenbaum (2015); Zhang, Li, et al. (2017)
studied inference of latent physics parameters from visual
and auditory data respectively. Our work focuses specifi-
cally on the combinatorial generalization ability of analysis-
by-synthesis approaches, rather than on extracting latent vari-
ables from data drawn from the same distribution as the model
was trained on.

Setup

Problem Setup

To demonstrate that our hybrid model is capable of doing com-
binatorial generalization, we designed a box-shaking game. A
number of balls with various materials are put inside a wooden
box and the box is shaken to produce sound. There are four
types of materials (polystyrene, wood, bronze, aluminum) in
total and their collision sounds differ. The models aim to learn
the materials by training with the audios from the one-ball sce-
nario and generalize to recognize the materials in two or three
balls scenarios.

The box is initially placed horizontally and the balls are ran-
domly placed inside the box. We simulate the process using
the audio synthesis engine described below and generate the
corresponding audio. The training data is a collection of 400
one-ball-shaking scenarios each with a random initialization
for the initial position of the ball, introducing a difference in the
generated audio. The training data is balanced with 100 cases
for each material.

Audio Synthesis Engine

In real life, obtaining clear audio requires a strictly con-
trolled environment and it’s almost impossible to keep extra-
neous variables constant (e.g. the motion that produces the
sound). Training neural networks demand large amounts of
labeled data, which makes the data collection process time-
consuming. Therefore, we chose to use a realistic sound syn-
thesizer to produce the audio for the model and human study
to avoid the previous problems. Audio synthesis engine pro-
duces realistic sound by simulating the physics evolution of a
given system in the following steps.

Controlled rigid body simulation. Collision information is
crucial to synthesizing realistic sound. The physics engine
Bullet (Coumans, 2015) is able to simulate the motion of the
objects in a sequence of time, given the initial position, ori-
entation, velocity of the objects. To successfully imitate the
shaking motion, we control the exact motion of the shaking
box by setting the position and orientation of the box at an ex-
tremely high frequency, a time step of 1/3600 second. The
simulation goes at the same rate and the other objects are
free to interact according to the engine. The physics engine
outputs the location, magnitude and direction of the collisions

at each time step for audio synthesis, along with the positions
of each object for visualization.

To capture the realistic trajectory of a natural shaking mo-
tion, we used OptiTrack V120 motion tracking system to get
the box’s position in Euclidean coordinates and rotation in
quaternions at a frame rate of 120 FPS. The data is then lin-
early interpolated to a frame rate of 3600 FPS to fit the simula-
tion rate. An up-and-down shaking trajectory is used uniformly
throughout the experiments. An illustrative example can be
found in Figure 1.

Audio synthesis. We adopt the method employed by pre-
vious work on realistic sound synthesis, SoundSynth (Zhang,
Li, et al., 2017). For a specific shape with fixed Young’s mod-
ulus, SoundSynth allows offline pre-calculation on the object.
The object’s vibrational modes are generated by finite element
methods (FEM) and boundary element methods (BEM) is ap-
plied to solve the Helmholtz equation conditioned on the vibra-
tion modes. After receiving the collision, position, and ampli-
tude from the rigid body simulator, SoundSynth computes the
impulses on the tetrahedral meshes of the object and com-
bines them with the pre-calculated vibration modes to produce
sound.

Figure 1: An example of the shaking motion and the generated
audio.

Models
Neural Networks

Recognizing one material from sound is often considered as
a pattern recognition process in which the model transforms
collected perceptual data to statistics and makes future judg-
ments by comparing new data with memorized statistics. This
can also be viewed as a classification problem and can be
effectively solved by training a neural network. However,
whether the neural network is simply fitting the labels or cap-
turing the key information about the data is unclear. Therefore,
we adapt the deep learning network VGGish (Hershey et al.,
2017) as our baseline to investigate the neural network’s per-
formance on the combinatorial generalization problem. The
architecture of the network can be found in Figure 2.

The original VGGish network transforms the audio wave-
form to a spectrogram and outputs a 128-dim feature vector.
The feature vector is fully connected with a 100-dim layer and
then fully connected to a four-class layer with sigmoid activa-
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Figure 2: The architecture of our baseline network.

tions. The highest probability materials are selected as the
output. We used the pretrained VGGish (Gemmeke et al.,
2017) and fine-tuned the network using the Adam optimizer
(Kingma & Ba, 2015) with a batch size of 20, a learning rate
of 0.0001, and the cross-entropy loss.

Physical Simulation

We would like to imitate how human handle this type of audi-
tory perception. It is hypothesized that human’s comprehen-
sive understanding of the auditory scene requires not only di-
rect pattern recognition but also generation of hypotheses and
comparison with the heard audio. We model this process as
MCMC sampling with simulation and the Metropolis-Hastings
acceptance rule. Figure 3 shows the sampling pipeline.

For a scene with N balls, let M denote a material vector of
N materials. During each step t, we update Mt through prob-
ability distribution p̂(Mt

i |Mt
1...M

t
i−1Mt−1

i+1 ...M
t−1
N ). Since mate-

rials are independent of each other and are uniformly random
chosen, the update is equivalent to randomly selecting a new
material. We aim to find a M that maximize the likelihood be-
tween the audio produced by M which can be simulated with
our synthesis engine and the ground truth audio A.

Simulation 
Engine

Gibbs 
  

sampling 
M1 M2 M3M1 M2 M3
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rejectcorrelation 
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generated audio 

sound texture
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Figure 3: Flowchart of updating one material in one step of
MCMC sampling in a three-ball scene.

The likelihood should be measured through a loss func-
tion that reflects how humans judge auditory similarity. In
this case, we adopt sound texture (McDermott & Simoncelli,
2011), a reasonable model for human sound similarity. The
sound texture method decomposes the audio into different fre-
quency bands and calculates statistics of cochlear envelopes.
The texture distance is measured by computing the correla-

tion coefficient C between the statistic vectors of the two au-
dios, indicating the similarity of two audios. Thus C does not
depend on the collision sequence, mitigating the stochasticity
introduced from the random initial positions. We map the cor-
relation coefficient C to an exponential function L(C) as our
likelihood function,

L(C) = e(C−1)·(2.5+t/4), (1)

where t is the current step of MCMC sampling. The likelihood
function controls the acceptance of the newly generated ma-
terials according to the correlation and time. We follow the
Metropolis-Hastings algorithm and each update accept new

materials with probability min
(

1, L(C)
L(Clast )

)
, otherwise reject

and keep the old materials.

Results
We measure the accuracy of inference of multiple balls by do-
ing maximum matching between two material vectors.

Let D denote the maximum matching of the material vec-
tors, and we define the accuracy:

A(M,M̄) =
|D(M,M̄)|

N
(2)

The simulation-based sampling model requires an initial
material vector. We initialize the material vector with the net-
work model outcome and random label respectively. As sam-
pling is a random process, we reduce the uncertainty of the
result by averaging the outcome of 5 sessions and running
long enough steps until it converges. The final accuracy and
standard error of the hybrid model can be seen in Table 1.

# balls neural network Hybrid model
2 0.73 0.90 ± 0.044
3 0.67 0.82 ± 0.042

Table 1: Average accuracy of the neural networks and our hy-
brid model. Our hybrid model is initialized with neural network
outcome and run for 30 sampling steps.

Comparison between models. We tested the neural net-
work that achieves 100% one-ball test accuracy on the two-
ball and three-ball scene but it scores poorly. Our model
reaches high accuracy regardless of the initialization. Initial-
ization with network model reaches high accuracy faster be-
cause neural network offers basic perception about the data
which may be partially accurate. Both initialization methods
stay at a high accuracy in the end which indicates the sam-
pling is stable after relatively long steps.

Comparison between scenes. Recognizing materials of
three balls is harder than that of two balls because, aside from
recognizing the appeared material types, the numerosity also
matters. Inferring numerosity may be hard for sound texture
as the difference of the sound due to numerosity might not
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Figure 4: The performance of the MCMC sampling with differ-
ent initializations.

be that noticeable. This might explain the accuracy drop in
the three-ball scene as compared to the two-ball scene. The
convergence speed of the two scenes differs as well. Two-
balls scene reaches convergence state at around 10 steps
while three-balls scene reaches around 20 steps (Figure 4).
Three-balls scene requires recognizing all materials correctly
to have a high correlation coefficient which takes more steps
to achieve. This result indicates that combinatorial general-
ization becomes more difficult as the number of objects in-
creases.

Overall, our hybrid model combines the neural network and
simulation-based sampling, leading to more efficient and more
accurate results in combinatorial generalization.

Conclusion
In this paper, we designed a hybrid model and demonstrated
its ability to perform combinatorial generalization. The neu-
ral network baseline performs poorly on this task, while our
method—using the neural network output as initialization for
simulation-based sampling—achieves significantly better per-
formance even with relative few sampling steps. The hybrid
model puts forward a new way to refine physical perception
with a physics engine and to blur the time-sensitive audio to
recognizable human-similar texture with sound texture. This

idea may be extended to other auditory perception scenarios.
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