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Abstract
Perceptual illusions—discrepancies between what exists
externally and what we actually see—reveal a great deal
about how the perceptual system functions. Rather than
failures of perception, illusions expose automatic com-
putations and biases in visual processing that help make
better decisions from visual information to achieve our
perceptual goals. Recognizing objects is one such per-
ceptual goal that is shared between humans and certain
Deep Convolutional Neural Networks, which can reach
human-level performance. Do neural networks trained
exclusively for object recognition “perceive” visual illu-
sions, simply as a result of solving this one perceptual
problem? Here, I showed four classic illusions to humans
and a pre-trained neural network to see if the network ex-
hibits similar perceptual biases. I found that deep neu-
ral networks trained exclusively for object recognition ex-
hibit the Müller-Lyer illusion, but not other illusions. This
result shows that some perceptual computations that are
similar to humans’ may come “for free” in a system with
perceptual goals similar to humans’.
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Introduction
Why do we see perceptual illusions? Rather than random fail-
ures, illusions are systematic and persistent distortions that
cause us to see the world in a way that differs from how it ac-
tually is. Do illusions arise as a result of solving one specific
type of perceptual problem, or are illusions a consequence of
computations necessary in a system that has many percep-
tual goals and must solve many types of problems?

Certain types of Deep Convolutional Neural Networks have
been built and trained to solve a critical and computationally
difficult problem of recognizing many kinds of objects, and
therefore share one perceptual goal with humans. At this
task, these networks have reached or exceeded human per-
formance (e.g. Simonyan and Zisserman (2014); Szegedy,
Vanhoucke, Ioffe, Shlens, and Wojna (2015)). However, deep
convolutional neural networks only approximate human neu-
rophysiology (both these networks and the human brain are
grossly hierarchical) and poorly approximate neural informa-
tion prorogation (there is no back propagation in these net-
works). Thus, given the excellent behavioral performance but
poor neurophysiological match, it is unknown how similar the
representations and computations are between deep neural
networks and the human brain.

It is possible that a perceptual goal, such as object recog-
nition, is critical enough to cause similar representations and

computations to emerge in any system that shares that goal.
For example, deep convolutional neural networks develop se-
lectivity for many of the same features important in early and
higher-level visual processing (Cadena et al., 2019; Yamins
et al., 2014). Does the similarity in selectivity between these
networks and humans suggest similarity in perceptual compu-
tation? Specifically, do neural networks trained exclusively on
object recognition develop that perceptual biases that would
cause them to “perceive” visual illusions, or other special
cases in perception?

My approach was to compare the strength of classic illu-
sions (Figure 1) in humans and in a neural network (VGG19,
Simonyan and Zisserman (2014)) pre-trained exclusively on
ImageNet object classification. I assessed human and net-
work perception of the illusions using similar paradigms for
both types of “agents”: human participants viewed an illusion
(such as a Müller-Lyer illusion, with arrows pointing out) and
chose an item that best matched the relevant feature of the
illusion (such as choosing which horizontal line best matched
the horizontal line in the illusion); the neural network pro-
cessed the same image of the illusion and the items, and the
best match was determined by how similar the test item was
to the illusion at the final layer of the network (given by cosine
distance between the two associated feature vectors).

Overall, I found that the network exhibited the Müller-Lyer
illusion, but not other illusions.

(D) Vertical-Horizontal(C) Ponzo

(B) Ebbinghaus(A) Muller-Lyer

Figure 1: The illusions tested were for classic illusions: the
Müller-Lyer (A), Ebbinghaus (B), Ponzo (C), and Vertical-
Horizontal Illusion (D).
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Methods

Participants

Humans Observers were recruited and run online via Ama-
zon Mechanical-Turk. Observers who failed one of two catch
trials were excluded from the analyses. Overall, 16% of peo-
ple were excluded.

Neural Network The primary neural network used for this
analysis was VGG19 (Simonyan & Zisserman, 2014), con-
structed in the Keras python package (Chollet et al., 2015).
The network has 19 layers typically classifies objects into 1000
object categories. For my analyses, I extracted the feature
vector from the last fully connected layer (FC7), before labels
were applied. For comparison, the analyses were also run
on VGG16 and InceptionV3 (Szegedy et al., 2015), both also
pre-trained on ImageNet (Deng et al., 2009).

Stimuli

Four geometric illusions (Müller-Lyer, Ebbinghaus, Ponzo, and
Vertical-horizontal) were used (Figure 1A-D). The images
were grayscale and 448 px x 448 px, although they were
scaled for different networks. All stimuli were generated in
various forms to promote generalization.

Illusions For the Müller-Lyer illusion (Figure 1A), 4 parame-
ters (central line length, arrow length, orientation, and stroke
width) of the illusion varied: The total length of the horizontal
line was either 150 or 200 px. The arrows had a length of 20,
30 or 40 px. The illusion was either horizontal or vertical. The
stroke width of the lines was either 3, 6, or 9 px.

For the Ebbinghaus illusion (Figure 1B), 3 parameters (cen-
tral circle radius, surrounding circle radius, and stroke width)
of the illusion varied: The radius of the target circle was either
20, 30, or 35 px. The radius of the smaller inducers was 7 or
20 px and the radius of the larger inducers was 15 or 50 px.
The stroke width of the lines was either 2, 3, or 4 px.

For the Ponzo illusion (Figure 1C), 2 parameters (bounding
line slope and stroke width) of the illusion varied as follows:
the slope of the two bounding lines was 20, 28, or 37. The
two horizontal lines were always 80 px. The stroke width of
the lines was either 4, 6, or 8 px.

For the Vertical-horizontal illusion (Figure 1D), 2 parame-
ters (orientation and stroke width) of the illusion varied as fol-
lows: the illusion could either be presented upright or upside
down and the stroke width of the lines was either 4, 6, 8, or 10
px. The length of the horizontal and vertical liens were always
200 px.

Procedure

Humans On each trial, participants viewed an illusion and
chose one of two items that best matched the relevant feature
of the illusion. The illusion was presented at the top center of
the browser window and the two items were presented below
it in a row. Participants were instructed to pay attention to the
relevant feature of the illusion (e.g. horizontal line) and pick

the item that matched it (e.g. in terms of length). Participants
indicated their choice by selecting a radio button on the page.

In total each participant completed 25-30 trials (preceded
by two easy practice trials and succeeded by two catch tri-
als, identical to the practice). On all trials, the test illusion re-
mained the same (no change to its parameters, such as size,
stroke width etc.) and only the test items differed from trial to
trial: one item was always an identical match (e.g. in terms
of length) and the other was always longer or shorter. Partic-
ipants saw each length of the test item once per experiment,
with order and display side (left or right side of the browser)
randomized.

Neural Networks To fairly compare human and network
performance, I ran similar trials through the network. The net-
work processed images of the target illusion and the two test
items. As with human participants, one item was an iden-
tical match and the other was longer or shorter. For each
image, I extracted the features from the last fully-connected
layer, FC7. I then computed the cosine distance between the
identical item and the illusion and the distance between the
test item and the illusion. Whichever item produced a smaller
distance (i.e. best matched the illusion) was the choice of the
network. In total, the network saw all test item lengths, and all
combination of illusion parameters (e.g. stroke width, inducer
size, etc.).

Analysis

Each trial generated a binary output (1 = “chose longer item”;
0 = “did not choose longer item”) for both the human partici-
pants and and the network. The probability of choosing the
test item of a particular length was modeled using logistic
mixed effects regression, as test item length and agent (hu-
man and network) as predictors and participant as a random
effect. The 50% point of the logistic curve was used to esti-
mate the magnitude of the illusion. If, for example, the illusion
is seen longer than it is, then the longer item will continue to
be chosen beyond what would be expected by chance, if the
illusion was seen veridically. This approach allowed me to de-
termine whether neural networks “perceive” visual illusions in
any form and whether what they perceive matches what what
humans perceive.

Results
Because my two-item paradigm differs from the typical method
for measuring illusions (which is done by adjusting the illusion;
e.g. Axelrod, Schwarzkopf, Gilaie-Dotan, and Rees (2017)), I
first confirmed the presence of the illusion in humans, then
compare it to the network behavior.

I found that both human participants and neural networks
exhibited the Müller-Lyer illusion (Figure 2A). Humans judged
the outward facing arrows as 16% shorter than veridical and
the inward facing arrows as 22% longer than veridical, thus
demonstrating the illusion. The network also differentiated be-
tween the two versions of the illusion, although it’s response
was shifted compared to humans: it judged the outward ver-
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Figure 2: The probability of choosing the longer (or larger) test item as a function of the length of the test item (%). Human (cyan)
and neural network (purple) behavior is plotted for four classic illusions: Müller-Lyer, Ebbinghaus, Ponzo, and Vertical-horizontal.

sion as 37% shorter than veridical and the outward version as
5% shorter. Overall, however, network behavior differed from
humans’, confirmed by by a significant agent (human and neu-
ral network) by test item length interaction (b=1.987, t=3.693,
p<0.001).

Humans exhibited the Ebbinghaus illusion, but the network
only demonstrated some ability to differentiate the two ver-
sions of the illusion (Figure 2B). Humans judged the cen-
tral circle surrounded by large inducers as 8% smaller than
veridical and the circle surrounded by smaller inducers as 9%
larger than veridical, thus demonstrating the illusion. The net-
work’s response the two versions of the illusion was small and
shifted compared to humans: the large-inducers circle was
49% larger than veridical and the smaller-inducers circle was
59% larger than veridical. This difference from humans was
confirmed by a significant agent by test item length interaction
(b=11.626, t=12.491, p<0.001).

In contrast, although humans participants exhibited the
Ponzo illusion, the neural network did not (Figure 2C). Hu-
mans judged the top horizontal line as 24% larger than veridi-
cal, thus demonstrating the illusion, although the magnitude
here was much larger than than previous demonstrations (e.g.
Axelrod et al.). In the neural network, the magnitude of the il-
lusion (given by the 50% probability point) could not be deter-
mined by the logistic function. The difference between human
and network behavior was confirmed by a significant agent by
test item length interaction (b=5.986, t=10.890, p<0.001).

Finally, neither human participants nor the neural net-
work demonstrated the Vertical-horizontal illusion using this
paradigm (Figure 2D). Humans judged the vertical line as only
1% longer than veridical, which is less than the typical mag-
nitude of this illusion. In comparison, the neural network also
failed to demonstrate the illusion and its choices were not well
fit using a logistic function. The difference between human
and network behavior was confirmed by a significant agent by
test item length interaction (b=9.538, t=10.778, p<0.001).

Other Networks When I repeated these analyses using
two other networks, deeper and more complex networks pro-
duced behavior closer to human behavior (Figure 3). Across
VGG16, VGG19, and InceptionV3, the overall pattern of re-

sults was similar, but the agent by test item length interaction
terms decreased for the deeper networks (except for Vertical-
Horizontal illusion). In fact, for the Müller-Lyer illusion, In-
ceptionV3 matched human behavior, indicated by an non-
significant interaction term, (b=0.711, t=0.743, p=0.457).

Figure 3: Similarity between human and neural network be-
havior. The interaction between agent (human and neural net-
work) and test item length is plotted for three neural networks:
VGG16 (light purple), VGG19 (purple), and InceptionV3 (dark
purple). The smaller the interaction term, the closer match to
human behavior.

Discussion
I found that a deep convolutional neural network (VGG19)
trained exclusively for object recognition exhibited the Müller-
Lyer illusion, despite having had no prior exposure to line
drawings of this sort. This finding reveals that neural networks
can develop perceptual biases similar to those in human per-
ception, causing them to “perceive” at least one type of illu-
sion.

The Müller-Lyer has previously been demonstrated in other
unusual situations, such as in children who have gained sight
after extended early-onset blindness (Gandhi, Kali, Ganesh,
& Sinha, 2015) and even in blind individuals who feel a haptic
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version of the illusion (Heller et al., 2002). In contrast, the
network did not show similar success with the other classic
illusions: while it was able to discriminate the two versions of
Ebbinghaus illusion, its behavior was not that similar to human
behavior, and for the Ponzo and Vertical-horizontal illusion, the
behavior was not comparable to human behavior.

Overall, these results show that neural networks can de-
velop similar perceptual biases as humans by having a shared
perceptual goal, such as object recognition, although the ex-
tent to which similar computations arise for free is limited.

One limitation with my method is the difficulty in aligning
tasks for humans and neural networks. For example, while
it is easy to tell human participants to “pay attention to the
horizontal line” in a Müller-Lyer illusion, it is difficult to do the
same in a neural network that lacks any attentional mecha-
nisms and has not been trained for such a task. There may
be evidence of such “misunderstanding” in the results for the
Ebbinghaus illusion, where the network judged both illusion
types as larger than veridical, possibly due to the fact that the
full extend of the display was always larger than the identical
test item. However, if it were the case that the network always
produced responses based on the size of the entire display
rather than the feature of interest, then the Müller-Lyer illusion
results should also over-estimate the size of the line (because
the arrows always extend the total size of the display). That
is not the case. Instead, the network systematically under-
estimated the size of the lines, for both versions of the illu-
sion. In future, fine-tuning of the network may better ensure
that the network is approaching the task properly. However,
in this study, the point was specifically to test how much can
be gained with the just perceptual goal of object recognition
alone, without any additional training.

Beyond showing how neural network perceptual behavior
compares with human perceptual behavior, a strength of my
approach is that it allows us to isolate the contributions to vi-
sual computations made by specific perceptual goals. In this
study, I found that the Müller-Lyer illusion can emerge when a
system simply needs to recognize many different objects. If I
were able to demonstrate the Ponzo illusion in a similar neural
network by training it to recognize objects in 3D or by training
it to navigate, that would mean that those goals are also criti-
cal to human perception – since we irresistibly experience the
illusion. In this manner, fine-tuning these network would not
only show that neural networks can be made to exhibit the il-
lusions, but it provides new opportunities to identify goals that
may otherwise not be giving as much consideration by vision
science and cognitive science more generally.
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