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Abstract: 
 

The locus coeruleus (LC) influences many cognitive       
functions (e.g., arousal, attention, and perception) due to        
its broad noradrenergic projections throughout the      
brain. However, the computational mechanisms of LC’s       
influence are complex and so constitute an area of active          
investigation. One promising approach would be to       
observe how LC engagement changes stimulus encoding       
in sensory cortex. As a preliminary step towards this         
goal, we combined a novel auditory oddball       
discrimination task with high-resolution fMRI (2mm​3      
isotropic voxels) and multivariate pattern analysis in       
humans. Even with modest trial counts (~24-70 trials per         
condition), sparse logistic regression classifiers could      
decode both auditory stimulus identity and behavioral       
choices above chance in auditory cortex, in single        
subjects and in each of six oddball stimulus levels.         
Further, stimulus decoders were highly specific to each        
oddball level, but choice decoders generalized across       
levels; there was also little overlap between stimulus and         
choice decoders. These findings suggest that our       
paradigm and computational analyses provide a      
promising approach for investigating LC influences on       
sensory neural representations in humans in the future. 
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Introduction 
 

The diverse efferent noradrenergic projections of the locus        
coeruleus (LC) nucleus suggest that this structure may be         
essential for maintaining normal cognitive abilities      
(Freedman, Foote, & Bloom, 1975; Moore & Bloom, 1979)​.         
A substantial factor in the challenge of studying        
LC-norepinephrine (LC-NE) system’s modulation of     
cognition arises from three key factors: the bi-directional        
relationship between LC activity and multiple interacting       
cognitive functions ​(Aston-Jones & Cohen, 2005;      
Aston-Jones, Rajkowski, & Cohen, 1999; Berridge &       
Waterhouse, 2003; Clewett, Huang, Velasco, Lee, &       
Mather, 2018; Nieuwenhuis, Aston-Jones, & Cohen, 2005;       
Rajkowski, Kubiak, & Aston-Jones, 1994; Sara, 2009;       

Tomlinson, Irving, & Blessed, 1981; Usher, 1999)​, LC’s        
broad projections throughout the brain ​(Aston-Jones &       
Cohen, 2005)​, and the non-monotonic influence of LC        
engagement on cognition ​(Yerkes & Dodson, 1908)​. 

One approach to addressing these challenges in the        
perceptual domain would be to investigate the       
computational consequences of LC engagement on the       
neural encoding of perceptual stimuli in relevant areas of         
sensory cortex. To do so in humans would require         
sophisticated characterization of neural representations with      
a high degree of spatial precision, in conjunction with         
appropriate behavioral paradigms. Here, we took a first step         
towards this goal by aiming to develop and optimize an          
appropriate auditory perception experimental paradigm and      
analytical approach using high-resolution functional     
neuroimaging in humans and machine learning decoding. 

We modified the traditional auditory oddball behavioral       
paradigm -- often used as a modulator of arousal via LC           
engagement and an activator of auditory cortex ​(Clewett et         
al., 2018) -- to include a sensitivity manipulation​. Our         
auditory oddball discrimination task thus includes multiple       
levels (i.e., distance from the frequent tone) of oddballs.         
We then used state of the art machine learning decoding          
(sparse logistic regression) to decode frequent versus       
oddball trials and subjects’ behavioral choices with low trial         
counts, and evaluated the similarity in neural representations        
for different oddball levels and across decoders for stimulus         
identity versus choice. To anticipate, our results provide        
converging evidence that our novel paradigm,      
high-resolution fMRI, and sophisticated computational     
analytic approach is appropriate for characterizing LC       
modulation of neural representations in future studies.  

 

Methods 
 

Subjects  
 

Seven healthy undergraduate students from the University       
of California, Riverside (2 males, 5 females, mean age =          
29.4, SD = 13.3) provided written informed consent to         
participate in this study. Participants reported normal or        
corrected-to-normal vision and hearing, had no history of        
psychiatric/neurological disorders, and were compensated     
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for their participation. The study was approved by the         
University of California, Riverside Institutional Review      
Board.  
 
Auditory oddball discrimination task 
 

During fMRI scanning, subjects listened to a series of tones          
that were either frequent or oddball. A frequent trial         
contained a sequence of five consecutive beeps of the same          
frequency (1000 Hz), and an oddball trial consisted of five          
consecutive beeps with one odd tone 1004, 1008, 1016,         
1032, 1064, or 1128 Hz) embedded (Figure 1). Subjects         
indicated their choice on each trial (“oddball or frequent?”)         
using a 4-button MRI-compatible response device. We       
interspersed “blank” trials (no tones) pseudorandomly with       
the oddball and frequent trials as controls; on these trials,          
subjects were instructed which button to press.  

 
Figure 1: Auditory oddball discrimination task. ​Auditory       
sequences of five consecutive tones made up “frequent”        
(five 1000 Hz tones) and “oddball” trials (single odd tone          
[1004, 1008, 1016, 1032, 1064, 1128Hz] embedded in four         
1000 Hz tones). The odd tone was never first or last.  
 
Neuroimaging data acquisition and preprocessing 
 

BOLD data were acquired on a 3T Siemens PRISMA         
scanner (TR/TE = 2000 ms/ 32 ms, flip angle (FA) = 69°,            
FOV = 220 x 220 mm​2​, voxel size 2x2x2 mm​3​) using a            
64-channel head coil. MR-compatible headphones and a       
4-button box were used for stimulus presentation and        
response recording. We used the SPM12 toolbox in Matlab         
(www.fil.ion.ucl.ac.uk/spm) to perform standard    
preprocessing, including realignment anatomical    
segmentation, and coregistration. All EPI images and the        
structural (T1: TE/TR/inversion time = 3.02 ms/ 2600 ms/         
1060 ms, flip angle (FA) = 8°, voxel size 0.8 mm isotropic)            
were registered to the first functional scan. For the purposes          
of decoding, we performed all analyses in individual brain         
space (i.e., did not standardize to MNI or Talairach) and did           
not perform any spatial smoothing. A standard       
hemodynamic response function (HRF) was subsequently      
fitted to the BOLD response in each trial time-locked to          
stimulus onset, following standard approaches     
(http://www.pymvpa.org), which yielded beta weight     
patterns for all voxels on a trial-by-trial basis. HRF fitting          

was done via custom-written Python scripts utilizing the        
PyMVPA2 toolbox. 

Automated gray matter parcellation was completed      
using the FreeSurfer software (recon-all). An auditory       
cortex ROI for each subject was then constructed combining         
the G_temp_sup-G_T_transv, G_temp_sup-Lateral, and    
S_temporal_transverse FreeSurfer labels (​Desikan-Killiany    
Atlas) across left and right hemispheres. 
 
Decoding stimulus identity and behavioral choice  
 

Prior to any classification, we normalized all single-trial        
betas via z-score. To ​characterize the neural representations        
of different oddball levels in comparison to frequent tones,         
we first performed simple dimensionality reduction by using        
a one-way ANOVA on trial types (oddball levels, frequent,         
and blank) to select 1000 informative voxels within the         
combined auditory ROI, based on their single-trial beta        
weights. We next trained a series of sparse logistic         
regression classifiers ​(Krishnapuram, Carin, Figueiredo, &      
Hartemink, 2005) on these informative features (betas) --        
one classifier in each oddball level (48 trials per condition:          
24 oddball, 24 frequent) -- to discriminate the two trial types           
based on stimulus identity. We also trained a second series          
of classifiers to discriminate subjects’ choices on a        
trial-by-trial basis, also within each oddball level (~70 trials         
per condition, unevenly spread across choices). Classifier       
performance was quantified using the bias-free metric of        
area under the receiver operating characteristic curve       
(AUROC) across six-fold cross-validation. 
 

Results  
 

As expected, subjects’ behavioral performance (hit rate)       
increased as a function of auditory oddball level (Figure 2a).          
The sparse logistic regression classifiers were able to        
decode both stimulus and choice above chance, despite the         
relatively few trials in each condition (Table 1). 

A 2 (stimulus/choice) x 6 (oddball level) repeated        
measures ANOVA revealed that the stimulus decoder       
performed better than the choice decoder across oddball        
levels, despite lower trial numbers in each condition (F(1,6)         
= 43.799, p < .001) (Figure 2b). We observed no significant           
main effect of oddball type in this top-level omnibus         
ANOVA (F(5,30) = 1.908, p = .123) and no interaction          
between decoder type and oddball level (F(5,30) = 1.553, p          
= 0.20). However, because our overall number of subjects         
is low, to better evaluate the appropriateness of our novel          
behavioral paradigm and computational neuroimaging     
approach for the purposes of future studies, we also elected          
to conduct two step-down one-way ANOVAs on oddball        
level within each decoder. Within the stimulus decoders we         
observed no main effect of oddball level (F(5,30) = 0.493, p           
= 0.799), but within the choice decoders we observed a          
significant main effect of oddball level (F(5,30) = 2.650, p =           
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.042). This suggests meaningful differences may exist       
between the stimulus and choice decoders overall, and also         
suggests that choice decoding increases as a function of         
behavioral performance whereas stimulus decoding appears      
insensitive to behavioral factors.  

 
Figure 2: ​Behavioral and decoding results. ​(A) Subjects’        
performance (hit-rate) on the auditory oddball      
discrimination task during fMRI scanning rose as a function         
of oddball level. (B) Classification accuracy (AUROC) for        
both stimulus and choice was above chance for most oddball          
levels, and was overall higher for stimulus than for choice. 

  
Table 1:​ t-values (two-tailed) for all conditions.  

Oddball Stimulus Choice 
1004 8.678*** 0.353 (n.s.) 
1008 5.844** 2.280​† 
1016 5.129** 3.480* 
1032 6.323*** 8.515*** 
1064 3.740** 2.608* 
1128 7.649*** 3.278* 

†​ ​p < .07, * p < .05, ** p < .01, *** p < .001. 
 

We next examined the similarity of the classifiers        
across different ​pairs of oddball levels within each subject         
separately. The goal of this representational similarity       
analysis ​(Diedrichsen & Kriegeskorte, 2017; Kriegeskorte,      
Mur, & Bandettini, 2008) was to evaluate whether there is          
differential similarity in decoder pairs when decoding       
stimulus identity versus choice, i.e. whether the       
representation of “oddballness” in auditory cortex is more        
similar when we care about a subject’s choices than when          
we care about the representation of the stimulus-specific        
properties. For example, we compared the weights placed        
on informative voxels for the 1004 Hz stimulus decoder         
versus the 1008 Hz stimulus decoder, 1004 Hz vs 1016 Hz,           
and so on. We did this for all pairs of stimulus decoders and             
all pairs of choice decoders, as well as across pairs of           
stimulus and choice decoders. To compare classifier       
similarity, we only examined voxels that had received a         
non-zero weight in the sparse logistic regression (which        
iteratively removes non-informative features from the      
classifier) across any of the six folds in both oddball levels           
being compared. We then used Pearson correlations to        
evaluate classifier similarity. Correlation coefficients were      
subsequently Fisher-z transformed. 

 
Figure 3: ​Generalization of stimulus and choice decoders        
across pairs of oddball stimulus levels. (A) Stimulus         
decoders typically did not generalize from one oddball level         
to another, but (B) choice decoders demonstrated       
significantly higher (t(6), -7.292, p < .001) generalization.        
Generalization was also typically higher for more-similar       
oddball pairs (e.g., 1032 & 1064 Hz) than more dissimilar          
pairs (1004 & 1064 Hz). Differences in generalization        
between stimulus and choice decoders are shown in (C).  
 

We found that pairs of stimulus decoders across oddball         
levels were more ​dissimilar than the same comparisons        
between choice decoders (Figure 3). That is, there was         
more overlap in the decoders of 1004 Hz and 1008 Hz           
choice than there was between 1004 Hz and 1008 Hz          
stimulus. The mean pairwise similarity for choice decoders        
was significantly larger than for stimulus decoders across all         
pairwise comparisons for all subjects (t(6) = 7.292, p < .001;           
Figure 3c), meaning that choice decoders generalize       
significantly more across oddball levels. We also observed        
that the similarity between oddball decoders grew slightly as         
a function of oddball similarity (Figure 3b), which was not          
observed in the stimulus decoders (Figure 3a). Finally,        
there was also essentially no overlap between stimulus and         
choice decoders within each oddball level (data not shown),         
suggesting unique representations underlie the encoding of       
each stimulus identity versus the choice to behaviorally        
respond “oddball”. 
 

Discussion 
 

Our goal with this project was to evaluate the sensitivity of a            
new approach to studying how LC may modulate neural         
encoding of perceptual stimuli in sensory cortex. Our novel         
auditory oddball sensitivity task, in conjunction with       
high-resolution multivariate fMRI in humans, revealed      
significant and distinct encoding patterns of      
stimulus-specific features in the auditory cortex but a more         
generalized pattern corresponding to choices. Using sparse       
logistic regression, we were able to decode both stimulus         
identity and participants’ behavioral responses within each       
oddball level tested, and further use representational       
similarity analysis ​(Diedrichsen & Kriegeskorte, 2017;      
Kriegeskorte et al., 2008) to quantify the similarity in         
decoders as a function of stimulus similarity in both         
classifier types -- even with low numbers of trials in each           
condition. These findings suggest a strong promise for our         
novel paradigm and computational neuroimaging approach      
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in revealing how the LC circuit changes stimulus        
representations in sensory cortex in future work. 
 That the stimulus decoders do not generalize from one         
oddball stimulus level to the next suggests that each         
stimulus type is encoded in a unique manner within the          
sensory cortex. In contrast, we observed robust       
generalization of the choice decoders, which increased as a         
function of stimulus similarity; we also observed that        
stimulus and choice decoders are largely distinct from one         
another, even within the same oddball stimulus level. This         
pattern of results suggests that choices may be encoded in          
auditory cortex as a function of top-down influences or         
feedback projections from higher cortical regions, such as        
the prefrontal cortex, consistent with previous reports       
(Gilbert & Sigman, 2007; Mante, Sussillo, Shenoy, &        
Newsome, 2013)​. Although the temporal resolution of       
fMRI is often too poor to differentiate between feed-forward         
versus feedback projections, future studies may seek to        
combine our paradigm and approach with more temporally        
precise neuroimaging modalities. 

The present paradigm cannot yet evaluate the       
computational consequence of LC engagement on the       
representations in sensory cortex due to the absence of         
active LC manipulation in our behavioral paradigm.       
Current work is underway to add these elements to our          
protocol. Thus, the present work serves to demonstrate the         
validity of our design and computational analysis approach,        
paving the way for future studies characterizing the role of          
LC in driving attention- and arousal-related changes in        
perceptual representations across a variety of brain regions. 
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