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Abstract

Our understanding of hearing and speech recognition
rests on controlled experiments requiring simple stim-
uli. However, these stimuli often lack the characteris-
tics of complex sounds such as speech. We propose an
approach that combines neural modelling with machine
learning to determine relevant low-level auditory features.
Our approach bridges the gap between detailed neuronal
models that capture specific auditory responses, and re-
search on the statistics of real-world speech data and
speech recognition. First, we introduce a feature de-
tection model with a modest number of parameters that
is compatible with auditory physiology. In order to ob-
jectively determine relevant feature detectors within the
model parameter space, the model is tested in a speech
classification task, using a simple classifier that approx-
imates the information bottleneck. This framework al-
lows us to determine the best model parameters and their
neurophysiological and psychoacoustic implications. We
show that our model can capture a variety of well-studied
features (such as amplitude modulations and onsets) and
allows us to unify concepts from different areas of hear-
ing research. Our approach has various potential ap-
plications. Firstly, it could lead to new, testable experi-
mental hypotheses for understanding hearing. Moreover,
promising features could be directly applied as a new
acoustic front-end for speech recognition systems.
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Introduction

Our current general understanding of hearing relies heavily
on experimental approaches that require simple stimuli to al-
low for controlled experiments. Moreover, these simple stimuli
are often based on specific auditory features that have been
derived from fields such as signal processing (e.g. amplitude
modulations (AM) and frequency modulations (FM)) and mu-
sic (e.g. timbre and pitch). These features cannot neces-
sarily be easily related to neurophysiology. In this work, we
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aim to expand the assumptions that underlie the basic fea-
tures that are examined in auditory research by harnessing
the strengths of both neural modelling and machine learning.
Rather than focusing on well-known features, we propose a
neuro-inspired auditory feature detection model that is com-
patible with auditory physiology and is capable of detecting
a variety of auditory features. We then apply a data-driven
machine learning approach to explore the model parameter
space and objectively identify relevant features. Our approach
allows us to bridge the gap between detailed neuronal mod-
els that capture specific auditory responses, and research on
the statistics of real-world speech data and its relationship to
speech recognition. Importantly, our feature detection model
can capture a wide variety of well-studied features using spe-
cific parameter choices, and allows us to unify several con-
cepts from different areas of hearing research.

Method
Neuronal Feature Detection Model

Our feature detection model is inspired by the early audi-
tory pathway, which includes the auditory periphery and early
brainstem. The model utilises precisely timed inhibition as a
mechanism for feature detection. This mechanism is thought
to be employed at various locations in the early auditory path-
way to improve noise-robust speech processing, such as in
onset and offset sensitive octopus cells in the Ventral Cochlear
Nucleus (VCN), spectral notch detection through wideband in-
hibition in the Dorsal Cochlear Nucleus (DCN) and AM sensi-
tive neurons in the Inferior Colliculus (IC). Our model is a sim-
plification and generalisation of previous proposals (see e.g.
Carney, Li, and McDonough (2015); Skorheim, Razak, and
Bazhenov (2014); Smith and Fraser (2004) for neuronal mod-
els for AM, FM and onset sensitivity, respectively) and unifies
the detection of a variety of features that tend to be treated
separately in the literature, such as onsets and AMs.

The first stage of the model approximates the auditory
nerve (AN) fiber response. Each AN fiber response xy, for
a signal x is estimated as follows:

xXf, = h(gr(x)3 (1)
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Here, h(-) = max(-,0) denotes a half-wave rectification and
gy.(-) denotes a Gammatone filter that extracts the frequency
component of x centred around f.. Given two sets of centre
frequencies E and I, the model output o[t] at a given time ¢ is
computed as follows:
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Here, fr,(-) and fz,(-) are low pass filters with time constants
Tg and 17 of inhibitory and excitatory populations. The delay
d; € D denotes the delay of each AN response, r is the ratio
between the strength of the inhibitory and excitatory stream.
Our model thus relies on six sets of parameters: E, I, D, r,
T, and T;. In order to keep the parameter space tractable, the
model variants in the results presented here were restricted
to up to two excitatory centre frequencies with wideband inhi-
bition centred around E, but this could be expanded in future
work.

Analysis Through Classification

The parameters of the model determine the type of features it
responds to. To study the importance of each of these features
in a speech processing context, the feature detectors are em-
ployed in a phoneme classification task. First, our model is ap-
plied to a given phoneme signal x to obtain our model output o.
The phoneme data used here originates from the LibriSpeech
dataset (Panayotov, Chen, Povey, & Khudanpur, 2015), which
was aligned per phoneme using the Montreal Forced Aligner
(McAuliffe, Socolof, Mihuc, Wagner, & Sonderegger, 2017).
The model output is used as input to a one-layer Long-Short-
Term-Memory recurrent neural network classifier (LSTM), a
machine learning algorithm that is well-suited for classifying
sequenced data. The LSTM is used to classify the phoneme
label y. We employ a small LSTM to ensure that high accuracy
can only be achieved by features that have a relatively simple
relationship to the label, an idea that is motivated by informa-
tion theory. The Data Processing Inequality dictates that the
model output o can only reduce the information about label y
compared to the information that was available in x. We are
interested in features that provide a useful compression of x
and only retain the relevant information about y, while forget-
ting the irrelevant information present in x, a general princi-
ple known as the Information Bottleneck (IB) (Tishby, Pereira,
& Bialek, 2000). Determining the IB directly is computation-
ally intractable for high-dimensional variables (such as sound
waves). However, our results indicate that there is a high cor-
relation between the LSTM classification accuracy and the 1B
principle in a reduced setting, where the IB is made tractable
by compressing the high-dimensional data (data not shown).

Results
Phoneme Classification Performance

We applied 1000 model variants with randomly sampled pa-
rameter settings to a classification task of twelve phonemes,
consisting of four vowels (A, I, €, &), four fricative consonants
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Figure 1: a Mean between-group confusion matrix for best
model variants. b Distribution of within-group accuracies for all
model variants, and between-group accuracy correlations. c-
d Accuracy achieved with the best model variants from a, the
original filtered signal, and ensemble models on a 10-vowel (c)
and 13-consonant (d) classification task. Human performance
on a similar task from Meyer et al. (2010) is included.

(f, v, s, z) and four plosive consonants (p, b, t, d). A sum-
mation of the confusions of the 100 best-performing model
variants in the three different groups shows that, as expected,
most confusions are made within the three phoneme groups
(fig 1a). A correlation analysis of the accuracies between the
three groups indicates that model variants that are well-suited
for fricative detection tend to be good at plosive and vowel
recognition as well, but the same is not true when comparing
model performance for plosive and vowel recognition (fig 1b).
This reflects the lack of overlap in spectral content of plosives
and vowels compared to fricatives, as fricatives contain the
noisy waveform that is characteristic for plosives as well as a
more periodic pattern that is usually associated with vowels.

The 100 best model variants were applied to a more difficult
10-vowel recognition task (fig 1¢) and 13 consonant recogni-
tion (fig 1d) task. For certain parameter settings, a single fea-
ture detector can outperform accuracy obtained with the orig-
inal filtered signal. This suggests that the detected features
allow for a more accessible representation of the relevant in-
formation in the original signal. The accuracy can be further
improved by employing an ensemble of feature detectors as
input for the LSTM instead of single model variants. Using
an ensemble of the 23 feature detectors that individually per-
formed best for each vowel and consonant increases accuracy
by around 30%. The achieved accuracy is particularly high for
consonants, where performance comes close to human per-
formance in a similar task (fig 1d-c).
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Figure 2: a Within-group accuracy in relation to the mean centre frequency for 12-phoneme task b Within-group accuracy and
the correlation of the average model output and the first formant (or spectral peak) in the 12-phoneme dataset. Formants were
estimated using parselmouth, a Python library for Praat (Boersma & Weenink, 2018; Jadoul et al., 2018). ¢ Accuracy versus
onset sensitivity, the mean accuracy of onset suppressive versus sensitive model variants is significantly different (p << 0.0005)
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Figure 3: a-f Responses and Modulation Transfer Function
(MTFs) of model variants (measured as the normalised mean
response to various AMs) for onset (a,b) AM (c,d) and both
AM/onset (e,f) model variants. g Distribution of accuracies of
three model types (params E =1 =1kHz and t; > 1, and d; >
d,.)in a fricative classification task (p < 0.005 and p < 0.0005
for ** and ***).
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Relevant Model Parameters and Detected Features

In this section, we discuss several relevant features detected
by our model that performed well in the context of a phoneme
classification task. We also relate these features back to psy-
choacoustic and neurophysiological findings.

AN Fibers Around Formants and Spectral Peaks Indi-
cate Good Performance The accuracy within the different
phoneme groups is heavily influenced by the centre frequen-
cies of the model variants. We find that vowel recognition is fa-
cilitated by lower centre frequencies, whereas best-performing
model variants for fricatives and particularly plosives tend to
have a high centre frequency (fig 2a). This effect is closely
related to the formants in vowels, which tend to lie between
200-1000 Hz, and spectral peaks in consonants, which tend
to be much higher. This relation can be made explicit by cor-
relating the formants of all phonemes with the mean output
of the model for these phonemes (fig 2b). Models that are
good at classifying vowels tend to have a negative correlation
(i.e. models have a high output when the formants are low)
whereas a positive correlation (i.e. model responds to high
frequency formants) is typical for improved plosive recogni-
tion. Fricatives, which have high formants but can also have
slower periodic components, benefit from either. Model out-
puts with a correlation close to zero (i.e. models that do not
respond to spectral peaks) perform badly in all groups.

AM Sensitivity Improves Fricative Recognition Our
model can be used to detect a range of features, in partic-
ular onsets, AMs or combinations of the two (fig 3a-f). We
analysed the performance of 350 model variants that could be
grouped into one of these three classes based on their on-
set response and Modulation Transfer Function. Here, each
model variant is restricted to 1kHz centre frequency for excita-
tion and inhibition and can only have positive inhibitory delays.
When applied to a classification task of four fricative conso-
nants, our results indicate that AM sensitivity is important for
fricative recognition (fig 3g). Importantly, the accuracy of cer-
tain model variants is higher than the accuracy achieved by
directly using the 1kHz channel as input, indicating that the



feature detector extracts useful features from the original sig-
nal. These results are in line with results from experimental
research which show that consonant recognition is degraded
when certain AMs are removed (e.g. van der Horst, Leeuw,
and Dreschler (1999)).

Onset Suppression Facilitates Phoneme Classification
We further extend our analysis of well-known features by in-
vestigating the typical onset sensitivity of a range of model
variants (fig 2c). The onset sensitivity is computed as (u, —
ur)/ (4o + pr), where u, and u, refer to the mean response to
the first 50 periods plus the median delay, and last 200 pe-
riods of a preferred frequency sound. An onset sensitivity of
-1 or 1 indicates a strongly onset suppressive or sensitive re-
sponse, respectively. Our analysis shows that strong onset
sensitivity generally leads to worse performance, whereas on-
set suppression improves performance. These results are in
line with the hypothesis that the suppression of onset noise
(or ‘spectral splatter’), as observed in the mammalian audi-
tory brainstem, can improve the clarity of a neural harmonic
representation (Spencer et al., 2015).

Conclusion

We have introduced a neuro-inspired feature detector model
as well as an analysis methodology that can be used to detect
important features. Our approach provides a unifying frame-
work that can be used to confirm and explain existing con-
cepts, such as the importance of spectral peak detection and
amplitude modulations. Moreover, it can be used to make sug-
gestions for future work in less well-known theories of hear-
ing, such as the importance of spectral splatter suppression
(Spencer et al., 2015). Furthermore, the framework lends it-
self well for extensions to different settings, such as a vari-
ety of speech-related tasks (e.g. speaker identification) and
environments (e.g. noise-robust features). Our proposed ap-
proach has various potential applications. Firstly, it could lead
to new, testable experimental hypotheses for understanding
hearing, both on the level of features as well as the underly-
ing neurophysiological parameters. Moreover, promising fea-
tures could be directly applied as a new acoustic front-end for
speech recognition systems.
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