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Abstract
The brain representational spaces of conceptual knowl-
edge remain unclear. We addressed this question in a
functional MRI study in which 27 participants were re-
quired to either read visual words or think about the con-
cepts that words represented. To examine the properties
of the semantic representations in the brain, we tested
different encoding models based on word embeddings
models -FastText (Bojanowski, Grave, Joulin, & Mikolov,
2017), GloVe (Pennington, Socher, & Manning, 2014),
word2vec (Mikolov, Sutskever, Chen, Corrado, & Dean,
2013)-, and, image vision models -VGG19 (Simonyan &
Zisserman, 2014), MobileNetV2 (Howard et al., 2017),
DenseNet121 (Huang, Liu, Van Der Maaten, & Weinberger,
2017)- fitted with the image referents of the words. These
models were used to predict BOLD responses in putative
substrates of the semantic network. We fitted and pre-
dicted the brain response using the feature representa-
tions extracted from the word embedding and computer
vision models. Our results showed that computer vision
models outperformed word embedding models in explain-
ing brain responses during semantic processing tasks.
Intriguingly, this pattern occurred independently of the
task demand (reading vs thinking about the words). The
results indicated that the abstract representations from
the embedding layer of computer vision models provide
a better semantic model of how the brain encodes word
meaning. https://tinyurl.com/y5davcs6.
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Introduction
Semantic memory is defined as the cognitive function that
holds and retrieves language related information (Binder, De-
sai, Graves, & Conant, 2009). fMRI-based classification stud-
ies have shown the semantic category of both pictures and
words can be decoded from multivoxel patterns in different

brain regions (Bauer & Just, n.d.) of the so-called seman-
tic network. Encoding models further enable us to reach to
a comprehensive level of how semantic information is rep-
resented during language processing tasks and define how
the brain derives a cognitive map of meaning (Naselaris, Kay,
Nishimoto, & Gallant, 2011; Felsen & Dan, 2006).

Word embedding algorithms (i.e. word embedding models
(Mikolov et al., 2013)) have shown that semantic knowledge
is organized in a meaningful way: words that share similar
semantics tend to have closer distances in a high dimensional
space that is defined by these algorithms, such as word2vec
(Mikolov et al., 2013), GloVe (Pennington et al., 2014), and
FastText (Bojanowski et al., 2017). These models are usually
3-layer neural network models and the outputs (i.e. a vector
of 300 elements) of the middle layer are used as the feature
representation of a given word that exists in the model training
corpus.

Studies using computer vision models (i.e. deep convo-
lutional neural networks (LeCun, Bottou, Bengio, & Haffner,
1998)) have also shown the structural organization of mean-
ing (Simonyan & Zisserman, 2014), which is image-based.
For instance, a computer vision model trained on a set of im-
ages can learn the semantic categories defined by the tar-
get labels. The trained-model not only manages to generalize
learned categories to unseen images but also can be used as
a feature extractor to facilitate transfer learning in new clas-
sification tasks (Jia et al., 2014; Yosinski, Clune, Bengio, &
Lipson, 2014). Features extracted by the second to last layer
of the convolutional neural network, which is often the global
pooling layer, are usually used as the feature representation
of a given image (Jia et al., 2014).

In our fMRI experiment, we had 2 experimental contexts
(i) participants were asked to read words that were visually
presented (condition read) or (ii) to think about the properties
and experiences associated with the words (condition think).
We asked (i) whether the representations of the words in the
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human brain are related to those produced by the word em-
bedding algorithms (ii) whether the strength of this relation-
ship is dependent on the task context (i.e., reading vs think-
ing) and (iii) whether word embedding algorithms provide a
better account of the brain representational spaces relative to
computer vision models.

To investigate the associative mapping of the semantic rep-
resentations of words and the corresponding brain activity pat-
terns, we implemented different encoding models based on
different word embeddings and image models.

An encoding model predicts the brain activity patterns us-
ing a set of features that are linearly or nonlinearly trans-
formed from the stimuli (Diedrichsen & Kriegeskorte, 2017;
Kriegeskorte & Douglas, 2018). In order to map the sensory
stimuli to the brain activity patterns, the encoding model re-
constructs the brain activity patterns by utilizing a given set
of feature/representational space extracted from the stimuli
(Naselaris & Kay, 2015).

We hypothesized image-like features were more likely to be
mentally represented during the think task relative to the read
task. Therefore, besides three word-embedding models, we
selected three computer vision models to extract features from
images corresponding to the words we used in the experi-
ment. These computer vision models were VGG19 (Simonyan
& Zisserman, 2014), MobileNetV2 (Howard et al., 2017), and
DenseNet121 (Huang et al., 2017).

A set of 7 left-lateralized regions of interest (ROIs) in the
well-known semantic network were pre-specified based on
Binder et al. (2009), and they included inferior parietal lobe
(IPL), lateral temporal lobe (LTL), ventromedial temporal lobe
including fusiform gyrus and parahippocampal gyrus (FFG &
PHG), dorsomedial prefrontal cortex (dmPFC), inferior frontal
gyrus (IFG), ventromedial prefrontal cortex (vmPFC), and pos-
terior cingulate gyrus (PCG) along with precuneus. We hy-
pothesized that, in these regions, the word embedding fea-
tures could explain the BOLD responses better than computer
vision model features when participants were asked to read
the words, while the computer vision model features explain
the brain activity patterns better when participants were asked
to think of related information of the words.

Method

Experimental procedure and Stimuli

There were two task conditions in the experiment (i) read and
(ii) think, with 4 blocks of 36 trials in each condition. In the read
condition, participants were asked to silently read the visual
words that appeared on the computer screen. In the think con-
dition, participants were asked to think about the words. There
were 36 Spanish words and 18 of them were living things (i.e.
tiger, horse) while the other 18 were nonliving (i.e. pencil).

fMRI acquisition and preprocessing

3-Tesla magnet and 64-channel head coil SIEMENS’s Ma-
gentom Prisma-fit scanner was used to collect data. For
each participant, one high-resolution T1-weighted structural

image and 8 functional MRI sessions were acquired. In each
fMRI session, a multiband gradient-echo echo-planar imag-
ing sequence with an acceleration factor of 6, resolution of
2.4x2.4x2.4mm2, TR of 850 ms, TE of 35 ms and bandwidth of
2582 Hz/Px was used to obtain 585 3D volumes of the whole
brain (66 slices; FOV = 210mm).

Word Embedding Models

The word embedding models used in the experiment were
pretrained (Bravo-Marquez & Kubelka, 2018) based on each
of the corresponding proposed methods using the Spanish Bil-
lion Word Corpus1. For each word used in the experiment, the
corresponding vector representation of 300 dimensions was
extracted.

Computer Vision Models

The computer vision models used in the experiment were pre-
trained models provided by the Keras Python library(Chollet,
2015) based on each of the corresponding proposed meth-
ods using the ImageNet dataset2. For each word used in the
experiment, we sampled 10 images collected from the inter-
net. Images were cropped and the object appeared at the
center on white background. The output vector of the global
average layer of the computer vision model for a given image
was its feature representation. The 10 vector representations
corresponded to the same word were averaged. The feature
extraction was done trial-wise accordingly for each participant,
each ROI, and each experiment condition.

Encoding Model Pipeline

The encoding model pipeline was the same as in Miyawaki et
al. (2008, also see nilearn (Pedregosa et al., 2011; Buitinck et
al., 2013)). After standardizing the feature representations by
subtracting the mean and divided by standard deviation, the
feature representations were mapped to the BOLD signal of a
given ROI by an L2 regularized regression (Ridge Regression)
with a regularization term of 100.

To estimate the performance of the regression, we parti-
tioned the data into 100 folds to perform cross-validation by
stratified random shuffling (Little et al., 2017). In each fold,
we randomly held out 20% of the data for testing, while the
rest 80% were used to fit the ridge regression model, using
the feature representations from word embedding models or
computer vision models as features and the BOLD signals as
targets, and then create the predictions for the held-out data.
The percentage of variance explained in each voxel was com-
puted for the predictions. An average estimate of the variance
explained was calculated. Voxels that had positive variance
explained values were kept for further analysis (Miyawaki et
al., 2008).

For each participant, ROI and condition, we computed the
average of the variance explained. To estimate the empiri-
cal chance level performance of the encoding models, a ran-

1http://crscardellino.github.io/SBWCE/
2http://www.image-net.org/
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dom shuffling was added to the training phase during cross-
validation before model fitting. The random shuffling was ap-
plied to the order of the samples for the features in the en-
coding models while the order of the samples for the targets
remained the same.

Results
Figure 1 shows the average explained variance by each en-
coding model. The error bars represent bootstrapped 95%
confidence interval across 27 participants.

The estimated empirical chance level performance of all
the encoding models was zero: when the feature represen-
tation of a word and its corresponding trials were permuted by
swapping the order of the feature representation matrix while
keeping the order of samples of the BOLD signals, there was
zero variance explained. This result suggests that variance
explained estimated from a given set of feature representa-
tions was not due to chance level noise.

First, we conducted one-way ANOVAs separately for the
word embedding models and the computer vision models in
each ROI and each experiment condition. In the read con-
dition, there was no difference among the word embedding
models in terms of variance explained but there was a differ-
ence among the computer vision models with the mobilenet
performing better than the others (Fig.1, upper panel). The
same patterns held in the think condition for only FFG and
PHG, PCG and Precun, and vmPFG (Fig.1, lower panel)

Then, we compared each pair of word embedding model
and computer vision models. We subtracted the variance ex-
plained of the word embedding model from the computer vi-
sion model and then performed a permutation t-test against
zero variance explained. Figure 2 shows that the computer vi-
sion models explained more variance across the participants
than the word embedding models across the ’read’ and ’think’
conditions and in all ROIs (all ps < 0.05, Bonferroni cor-
rected).

Finally, we computed the average of variance explained
across the word embedding models or also across the com-
puter vision models for each participant, each ROI, and each
experimental condition. Then we tested for the pairwise dif-
ferences between the two experimental conditions (read vs.
think) for each ROI. Figure 3 shows the violin plots of these
differences of each experimental condition. The ranges of the
the violin figures represent the minimums and maximums of
the distribution, while the inner lines represents the 25%, 50%,
and 75% quartile of the distribution. As showed in the figure,
computer vision models significantly explained more variance
than the word embedding models in the think condition com-
pared to the read condition for the FFG and PHG as well as
PCG and Precun.

Figures

Discussion
Overall we found that computer vision models outperformed
word embedding models in explaining brain responses dur-

Figure 1: Average Variance Explained by each Encoding
Model

Figure 2: Differences between each Computer Vision Model
and Word Embedding Model in Average Variance Explained

ing semantic processing tasks. This pattern occurred inde-
pendently of the task demand (reading vs thinking about the
words). However, computer vision models predicted more
variance in visual areas such as the fusiform in the think con-
dition, which is consistent with participants accessing to visual
representations during mental simulation of the concept. In-
triguingly, even during the read condition the computer vision
model was better at explaining the brain responses. These
data indicate that the abstract representations from the em-
bedding layer of computer vision models provide a better ”se-
mantic” model of how the brain encodes word meanings.

Acknowledgments

D.S. acknowledges support from the Spanish Ministry of
Economy and Competitiveness, through the ’Severo Ochoa’
Programme for Centres/Units of Excellence in R & D
(SEV-2015-490) and project grants PSI2016-76443-P from
MINECO and PI-2017-25 from the Basque Government.
R. Santana acknowledges support by the Basque Govern-
ment (ELKARTEK programs), and Spanish Ministry of Econ-
omy and Competitiveness MINECO (project TIN2016-78365-
R).

865



Figure 3: Differences between Read and Think Conditions
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