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Abstract: 

Sustaining attention to a task results in variability due to 
intra-individual fluctuations in performance and inter-
individual differences in overall task ability. What are the 
neural and cognitive bases of this variability? Attention 
is thought to play a central role by facilitating the 
representation and communication of stimulus 
information within and across sensory, attentional, and 
executive networks. Here we ask two questions: (a) Does 
performance variability correspond to changes in the 
fidelity and/or connectivity of stimulus representations? 
and (b) Do intra- and inter-individual differences 
correspond to the same underlying neural changes? 
Using a large fMRI dataset (N = 227; 511 task runs) from 
multiple studies we used Representational Similarity 
Analysis (RSA) to quantify the representational fidelity 
(RF) and representational connectivity (RC) of stimulus 
representations during the gradual onset Continuous 
Performance Task (gradCPT) and related these neural 
variables to intra- and inter-individual differences in 
performance. We found increased RF and RC related to 
better performance within and across a network of brain 
regions in the visual, frontal, and parietal cortices. 
Interestingly, inter-individual differences involved visual 
cortex while intra-individual differences involved parietal 
and frontal regions, suggesting differential 
neurocognitive mechanisms underlying inter- and intra-
individual variability in sustaining attention. 
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Introduction 

When doing a task that requires prolonged 
engagement, inter- and intra-individual differences in 
task performance emerge. Here we examined whether 
the cognitive and neural states involved in trial-to-trial 
fluctuations in task performance are the same that 
explain individual differences in performance. While the 
underlying neurocognitive causes of inter- and intra-
individual variability are probably partially task specific, 
the ability to sustain attention likely plays a key role in 
both. Generally, theories of attention posit that attention 

boosts performance by potentiating the representation 
of relevant stimulus features while suppressing 
irrelevant or distracting information (e.g., Peelen & 
Kastner, 2014). This effectively increases the fidelity of 
stimulus representations in cortical regions where the 
stimulus-feature representations are stored (e.g., 
Rothlein, DeGutis, & Esterman, 2018). Further, to 
enable efficient and accurate task-directed behavior, 
attention facilitates the integration of stimulus-feature 
representations with task-rule representations by 
broadcasting information about the stimulus throughout 
large-scale cortical networks that are generally 
localized to frontal and parietal cortices (e.g., 
Buschman & Kastner, 2015).  

   Previous research has examined sustained attention 
using fMRI-based measures like functional connectivity 
and univariate activation; however, the resulting 
interpretations were limited by ambiguities inherent to 
univariate comparisons (i.e. many factors could be 
driving both neural and behavioral variability). Further, 
variability due inter- vs. intra-individual differences were 
rarely compared. Given the importance of stimulus-
based information processing in cognitive models of 
attention, Representational Similarity Analysis (RSA) 
was used to isolate and quantify the representational 
fidelity (RF) and representational connectivity (RC) of 
stimulus representations from multi-voxel patterns of 
BOLD activation during the gradCPT, a sustained 
attention task. We related these neural measures to 
measures of inter- and intra-individual task variability 
and revealed striking differences in the brain regions 
involved in each type of variability.  

Methods 

Participants 

A total of 227 individuals were recruited from the Boston 
area to participate in one of 4 different studies. These 
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studies consisted of Esterman et al., (2013) (N = 16), 
Esterman et al., (2017) (N = 16), Fortenbaugh et al., 
(2018) (N = 146), and Kucyi et al., (2016) (N = 28) with 
an additional cohort of individuals with ADHD (N = 21) 
who completed the same protocol but were not included 
in the published study. All studies were approved by 
their respective IRBs. 

Experimental Paradigm – the gradCPT 

The gradCPT is a sequential go/no-go task consisting 
of photographs of city and mountain scenes (10 
exemplars of each), and participants were instructed to 
respond (button press) to frequently occurring city 
scenes (90% of trials) and withhold to mountain 
scenes (10% of trials). Images gradually transitioned 
from one to the next, with each transition occurring 
over 800 ms (1300 ms for data from the Kucyi et al., 
(2016) protocol). Participants repeated ~8 min. runs of 
task (1 to 5 runs) resulting in 511 total runs. A subset 
of the data had rewarded blocks (Esterman et al., 
2017) or thought probes (Kucyi et al., 2016). However, 
these components were ignored for the purposes of 
this study. 

   To infer instantaneous attentional state for the intra-
individual analyses, response times (RTs) to correct 
city trials were used to compute variance time courses 
(VTCs) that measured trial-to-trial variations in RT. 
Higher VTC values reflected periods of greater 
deviations from the mean RT and indicated a worse 
attentional state (Esterman et al., 2013). To infer 
individual attentional ability, d’ (a measure of accuracy) 
was used because it is highly reliable and is related to 
several other measures of attentional ability 
(Fortenbaugh et al., 2015).  

fMRI-Representational Similarity Analysis  

Scanning was performed across 3 different equipment 
configurations (for details, see citations for each study) 
and accordingly, all results accounted for study as a 
covariate. Standard functional data preprocessing 
steps were performed, and the preprocessed data was 
smoothed (6mm FWHM) and normalization to 
Talairach space. The preprocessed time courses 
underwent further cleaning by running a GLM using a 
set of nuisance regressors—specifically, white matter 
and CSF signal time courses; six head-motion 
parameter time courses; linear, quadratic, and cubic 
trends (-polart 3 in AFNI)—and saving the resulting 
residuals.     

 

 

Figure 1: Using RSA to estimate representational 
fidelity (RF) and representational connectivity (RC). a. 
Activation patterns were computed for each of the 10 

city exemplars via GLM (t-values). b. Pairwise 
similarity of activation patterns for each city exemplar 
were used to form representational similarity matrices 
(RSMs). c. Each participant’s RF was quantified as the 
correlation coefficient between that participant’s RSM 
and the leave-one-subject-out (LOSO) group average 

RSM from the same ROI. d) Each participant’s RC 
was computed using the correlation between a 

participant’s RSM from ROI 1 and the LOSO group 
average RSM from ROI 2. 

   Representational similarity analysis was performed 
on the city exemplars by estimating exemplar-specific 
activation patterns consisting of beta coefficient t 
values from a GLM (Fig. 1a) that modeled each 
participants cleaned time courses (concatenated 
across runs) with 11 event-related regressors—one for 
each of the 10 city exemplars and one for all mountain 
trials. The resulting exemplar-specific beta-t maps 
served as the activation values for RSA that was 
carried out using inhouse code run in MATLAB 
(Mathworks, Inc.). Parcellation-based RSMs were 
generated for each ROI (i.e. node) in both the Yeo 7 
Network and Schaefer 100 parcellations (Schaefer et 
al., 2018) (Fig. 1b). Pairwise correlation coefficients 
(Pearson) were computed for each pair of city-
exemplar activation patterns and these comprised the 
similarity values of the RSM.  

   Parcellation-based RSMs were used to estimate the 
representational fidelity (RF) and connectivity (RC) 
within and between each ROI respectively. Both RF 
and RC were computed using a leave one subject out 
(LOSO) reliability procedure whereby each 
participant’s RSMs were correlated (Pearson) with the 
remaining participants’ group average RSM from either 
the same ROI (RF, Fig. 1c) or a different ROI (RC, Fig. 
1d). This process yielded participant-specific RF/RC 
values for each ROI/ROI-pair in the parcellation and 
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these values were used for the inter-individual 
differences analysis.    

Estimating the Intra-individual Fluctuations in 
Attentional State 

 
 

Figure 2: VTC-based subsample procedure to 
estimate state-specific RF and RC values. A sample 
participant’s VTC is shown on the left. 50% of trials 

were sampled according to the VTC such that 
subsamples linearly stepped through 24 different 

attentional states from 1 (worst) to 24 (best). For each 
subsample, parcellation-based RF and RC values 

were computed. 

To estimate how intra-individual differences in 
attentional state related to the parcellation-based 
measures of RF and RC, a behavior-based 
subsampling procedure was employed. This involved 
using the VTC as a proxy for attentional state and 
pseudo-randomly subsampling 50% of trials to have a 
target average VTC value. Specifically, we computed 
24 target average VTC values consisting of equal 
increments from the maximum possible subsample (i.e. 
worst attentional state) to the minimum (best) and used 
an iterative algorithm to identify subsamples that 
minimized error from the target VTC value. This was 
done separately for each city exemplar to ensure that 
each subsample had an equal distribution of exemplars. 
Parcellation-based RF and RC values were computed 
for each subsample following the same procedure 
described in Fig. 1 but with 50% of trials. Each 
subsample (except the min. and max) was repeated 10 
times and the RF and RC used for the intra-individual 
differences analysis consisted of the average RF and 
RC of these 10 repetitions. 

Results 

Inter-individual Differences in RF and RC 

We sought to determine how RF and RC related to 
individual differences in attentional ability (estimated 
with gradCPT d’). To do this, d’ values were fit using 
separate mixed-effects models for each ROI (RF) and 

ROI pair (RC) that also included motion and study as 
confound variables. The RF or RC coefficient value 
measured the extent to which the fidelity of stimulus 
processing within that ROI or the connectivity of 
stimulus information between ROIs related to individual 
differences in performance. As Fig. 3a shows, RF in the 
visual network (bonf. p < 0.05) and to a lesser extent, 
RC between the visual and dorsal attention network 
(DAN; p < 0.05) related to individual differences in 
attentional ability. This suggests that the ability to 
activate reliable representations of stimulus features 
was important for overall performance on the gradCPT.    

Intra-individual Differences in RF and RC 

We additionally sought to determine how RF and RC 
related to intra-individual fluctuations in attentional state 
(estimated by computing RF and RC within VTC-based 
subsamples). To do this, VTC-based attentional state 
values (1 to 24) for each participant were fit against the 
corresponding subsample RF and RC values using 
separate mixed-effects models for each ROI/ROI-pair. 
Motion and study were included as confound variables 
and random slopes were estimated by participant and 
by study. As Fig. 3c shows, increased RF in the ventral 
attention (VAN) and executive networks (EN) as well as 
increased RC between the DAN, DMN, VAN and EN 
were associated with better intra-individual measures of 
attentional states (bonf. p < 0.05). Fig. 1d. shows that 
the RF effect is largely right lateralized. This suggests 
that the representation of stimulus information within 
and broadcasting of this information across large-scale, 
domain general brain networks is related to one’s 
instantaneous attentional state.    

Conclusion 

We found that both RF and RC changed as a function 
of inter-and intra-individual differences in attention 
suggesting the neurotopography of stimulus information 
processing was associated with attentional ability and 
state. Trait-like inter-individual measures of attentional 
ability were associated with changes in visual regions 
while state-like attentional fluctuations were associated 
with changes within and across large-scale brain 
networks often associated with domain general 
processing. The differences suggest that the ability to 
potentiate task-relevant stimulus-features underlie 
individual differences in attentional ability while the 
broadcasting of this stimulus information is reflective of 
one’s instantaneous attentional state. 
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Figure 3: The relationships of RF and RC with inter- and intra-individual differences in sustained attention. a. A 
circular plot depicting networks from the Yeo 7 parcellation where RF and RC related to d’. b. A brain map 

depicting significant inter-individual RF from the Schaefer 100 parcellation. c. A circular plot depicting where RF 
and RC relates to intra-individual attentional state. d. A brain map (Schaefer 100) depicting where RF 

significantly relates to intra-individual fluctuations in attentional state. *p < 0.05; **bonf. p < 0.05.    
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