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Abstract
One of the most fundamental organizational principles of
the brain is the separation of excitatory (E) and inhibitory
(I) neurons. In addition to their opposing effects on post-
synaptic neurons, E and I cells tend to differ in their selec-
tivity and connectivity. Although many such differences
have been characterized experimentally, it is not clear
why they exist in the first place. We studied this ques-
tion in an artificial neural network equipped with multiple
E and I cell types. We found that a deep convolutional
recurrent network trained to perform an object classifica-
tion task was able to capture salient distinctions between
E and I neurons. We explored the necessary conditions
for the network to develop distinct selectivity and con-
nectivity across cell types. We found that neurons that
project to higher-order areas will have greater stimulus
selectivity, regardless of whether they are excitatory or
not. Sparser connectivity is required for higher selectiv-
ity, but only when the recurrent connections are excita-
tory. These findings demonstrate that the differences ob-
served across E and I neurons are not independent, and
can be explained using a smaller number of factors.

Keywords: visual cortex; Dale’s principle; artificial neural net-
works

Introduction
Deep neural networks have become powerful tools to model
the brain (Yamins & DiCarlo, 2016). However, standard deep
networks lack fundamental architectures of the brain, in partic-
ular Dale’s law, the separation of excitatory (E) and inhibitory
(I) neurons. In the brain, excitatory and inhibitory neurons dif-
fer in several important ways. There are several times (4-10x)
more excitatory neurons than inhibitory neurons. Neurons that
project to other areas, the so-called “principal neurons”, are all
excitatory in the cortex. In the mammalian sensory cortex, ex-
citatory neurons are overall more selective to stimuli than in-
hibitory neurons in the same area (Znamenskiy et al., 2018).
Finally, excitatory neurons are more sparsely connected with
each other (Harris & Shepherd, 2015), compared to inhibitory
neurons.

It is not clear whether these differences across excitatory
and inhibitory neurons serve computational purposes. It is
also unknown whether these differences are mutually inde-

Figure 1: Convolutional recurrent network with multiple
cell types. Principal neurons (PN) are excitatory, while
output-gating (OG) and input-gating (IG) neurons are in-
hibitory.

pendent or not. Here we address these questions using artifi-
cial neural networks.

Multi-cell Convolutional Recurrent Network
The networks we use to model the visual cortex start with
2 layers of purely feedforward, convolutional processing, fol-
lowed by 2 layers of recurrent processing (Figure 1). Each
recurrent layer consists of excitatory and inhibitory neurons
(channels). In the brain, excitatory and inhibitory neurons can
be further divided into many subtypes that differ in their inputs,
output targets, and gene expression. Two major types of in-
hibitory neurons target input-receiving and output-generating
areas of excitatory neurons respectively.

Here we modified the structure of a convolutional LSTM
unit (Xingjian et al., 2015) to introduce two distinct types of
inhibitory neurons into the network (Figure 1). We use multi-
layer perceptrons (MLPs) with a single hidden layer to recur-
rently generate the input and output gates. The two additional
sets of neurons in the hidden layers become the input-gating
(IG) and output-gating (OG) neurons. In the standard version
of this network, we impose Dale’s law in the recurrent layers
by ensuring that principal neurons (PN) only make excitatory
connections. In comparison, the gate neurons (IG, OG) all
make inhibitory connections.

Reproducing functional and structural
differences across cell types

We trained the multi-cell network on the image classifica-
tion dataset CIFAR10 (Krizhevsky & Hinton, 2009). We ask
whether training develops qualitative differences between ex-
citatory and inhibitory neurons in the network, as observed
in the brain. We measured the selectivity to natural images
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for model excitatory and inhibitory neurons. The selectivity is
quantified as the skewness of the distribution of responses to
various stimuli (Samonds, Potetz, & Lee, 2014). The skew-
ness is higher if a neuron is strongly selective to a small num-
ber of stimuli. After training, the selectivity is substantially
higher for excitatory neurons (PN) compared to inhibitory neu-
rons (IG, OG), in both recurrent layers (areas 3 and 4). Then,
we quantified the proportion of connection weights that ex-
ceed a threshold chosen to separate the strongest weights
from the weaker weights. We found that sparser excitatory
connectivity emerged in the network after training, in agree-
ment with biological observations.

Why do excitatory and inhibitory neurons have
distinct selectivity and connectivity?

We have shown that neural networks with excitatory and in-
hibitory neurons develop different selectivity and connectivity,
qualitatively reproducing long-standing findings in the brain.
The emergent differences across our model E and I neurons
can only be explained by their built-in structural asymmetry.
We have incorporated three major forms of asymmetry that
exist in the brain. In this section, we will remove individual
asymmetry, and test which one led to the observed differences
in selectivity and connectivity.

Figure 2: Selectivity and connectivity in networks with var-
ious ratios of excitatory and inhibitory neurons. image
skewness (a), and connection density (b) for networks where
the number of inhibitory neurons (both IG and OG) varied from
1/64 to 4x of the number of excitatory neurons.

Asymmetry in numbers: In our standard network, the ratio
between the number of OGs(IGs) and PNs is 1:4. We varied
the number of inhibitory channels in the recurrent layers, while
maintaining the number of excitatory channels. We found lit-
tle evidence that the difference in E and I selectivity depends
on the ratio of their numbers (Figure 2a). In comparison, the
density of inhibitory connections decreases as the number of
inhibitory channels increase, while the connection density of
excitatory neurons remain steady (Figure 2b).

Asymmetry in projection: In both the cortex and our

Figure 3: Removing asymmetry between excitatory and
inhibitory neurons. Difference in connection density against
difference in image selectivity for areas 3 (a) and 4 (b) of three
types of networks. Light circles: individual networks; dark cir-
cles: average.

standard network, principal neurons are exclusively excitatory.
Here, we trained InhPN networks with inhibitory principal neu-
rons and excitatory interneurons. In InhPN networks, the exci-
tatory neurons (interneurons) are less selective to natural im-
ages compared to the inhibitory neurons (principal neurons)
(Figure 3). This result argues that whichever type of neuron
serves as the principal neurons would demand higher selec-
tivity, presumably because the principal neurons need to carry
detailed stimulus information to the next layer. Interestingly, in
the InhPN networks, the connectivity among inhibitory (princi-
pal) neurons remains dense despite a heightened selectivity
(Figure 3). This result is in stark contrast with the sparser con-
nectivity needed for highly selective excitatory neurons in the
standard network.

Asymmetry in action: We removed Dale’s law in No-
Constraint networks. The formerly-excitatory principal neu-
rons developed higher selectivity compared to the formerly-
inhibitory interneurons (Figure 3), consistent with our previous
finding that principal neurons have higher selectivity regard-
less of the sign of their outputs. Similar to previous results, the
principal neurons no longer have sparser connectivity (Figure
3).

Conclusion

We have shown that recurrent neural networks equipped with
multiple cell types are capable of capturing several important
features of the brain, including higher selectivity and sparser
connectivity among excitatory neurons. These qualitative fea-
tures emerged solely from the pressure to perform the task,
suggesting that these qualities are indeed beneficial to task
performance. This allows us to study what aspects of the net-
work give rise to this distinction between excitatory and in-
hibitory neurons. We found that the higher selectivity of ex-
citatory neurons is mainly driven by their role as the princi-
pal neurons that transmit information to upper layers. When
Dale’s law is obeyed, a higher selectivity necessitates sparser
connectivity among excitatory neurons.
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