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Abstract: 

Visual attention and motor actions are intrinsically linked 
and tightly spatiotemporally coupled in real-world 
behavior, and yet very few studies of natural gaze 
behavior account for the dynamics of the body, thereby 
missing a fundamental aspect of the perception-action 
loop. To address this, we experimentally capture whole 
body kinematics and time-synced gaze in a natural, high-
dimensional task, to investigate the influence of motor 
actions on gaze behavior. We use a combination of linear 
and nonlinear autoregressive models with exogenous 
body input to assess the predictive power of prior gaze 
and motor dynamics on future gaze location, and find that 
our nonlinear model significantly outperforms previous 
linear models for predicting natural gaze dynamics, and 
that incorporating whole body kinematic information into 
our model significantly improves gaze prediction 
performance versus simple gaze autoregression. 
Incorporating this body information into visual saliency 
models helps improve our understanding of visuomotor 
interactions in the real world.  
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Introduction 

How perception is linked to action is a fundamental 
question in neuroscience - much remains unknown 
about the mechanisms of visuomotor behavior in real-
world environments. Eye movements are tightly linked 
to our behavior and cognition through the allocation of 
overt and covert attention (Land & Furneaux, 1997), 
and foveal constraints on image resolution result in eye 
movements providing a direct proxy of attention 
(Hendrickson & Yuodelis, 1984) or ‘attentional spotlight’ 
over our environment. The specific sequence of these 
serial targets of attention must therefore facilitate the 
ongoing cognitive demands of the task at hand 
(Treisman & Gelade, 1980).  

Until relatively recently, research into gaze behavior 
was restricted to laboratory settings due to the 
complexity and non-portability of eye tracking 
equipment. Whilst work over the last two decades has 
shifted the focus onto gaze behavior in natural everyday 
tasks and contexts, this has generally been restricted to 
static scene viewing, which only represents a very small 
subset of gaze behavior. Such work in real-world 
saliency has demonstrated that the control of where we 
look is based overwhelmingly on the location of 
information required by ensuing action sub-goals, and 
as such is spatiotemporally locked with body actions 
(Epelboim et al., 1995; Hayhoe et al., 2003; Hayhoe et 
al., 2003; Land and Furneaux, 1997; Land et al., 1999; 
Patla and Vickers, 1997; Pelz and Canosa, 2001, 
Schütz et al., 2011; Tatler et al., 2011). If we are to 
understand from this mounting body of evidence that 
gaze behavior exists as part of an embodied system 
(Sprague et al. 2007), then to truly understand natural 
gaze behavior we must design experimental methods 
to capture and incorporate this embodiment, rather than 
remove it.  

Modelling the link between perception and action has 
historically proven difficult due to the lack of high-
resolution body movement information. Given our 
understanding that eye-movements are embedded in a 
rich visuomotor repertoire, we must now develop data-
driven models to predict eye-movements, not only from 
a visual saliency perspective, but from an embodied 
perspective, placing perception into the context and 
actions of the body, i.e. motor behavior. In this regard, 
we present an embodied methodology here to capture 
sensory inputs and motor outputs in natural behavior, 
rather than constrain them. Sensory inputs are 
recorded using a head mounted eye-tracker, scene 
camera and microphone, whilst simultaneously 
recording skeletal motor outputs through motion 
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tracking 66 degrees-of-freedom (DOF) in the body to 
capture and quantify unconstrained behavior. This 
allows us to test a simple hypothesis of embodied 
saliency, namely whether it is possible to predict eye-
movements directly from the movement dynamics of 
the body. 

Methods 

We used a portable eye-tracker (SMI Eye Tracking 
Glasses 120Hz, Sensomotoric Instruments, Teltow 
Germany) in combination with a portable full body 
motion capture suit, measuring 66 degrees of freedom 
(DOF) from the body using 17 inertial measurement 
units at 60Hz (XSENS MVN) (Figure 1A). Experiments 
were filmed with a static video camera, as well as with 
the integrated egovideo from the eye tracker camera. 
Subjects (n=7) were asked to perform a cooking task, 
in this case cooking an omelette, using a standardized 
neurorehabilitative rubric in a working hospital kitchen 
environment (Charing Cross Hospital, London, UK). 
(Figure 1B). 

We gathered time-synced gaze and full body motion 
data from 7 healthy subjects with perfect or corrected 
vision, with an average trial length of 16 minutes. Suit 
sensors and eye-tracking glasses were calibrated using 
standard manufacturer procedures and were recorded 
simultaneously on the same device. Time alignment of 
the data streams was performed post-hoc using 
Chronoviz software and body data interpolated to 
match gaze sampling frequency. We subsequently 
created several different autoregressive models to test 
predictivity. We initially took a linear approach, using a 
linear Vector AutoRegression with eXogenous input 
model (LinVARX) where y represents the gazepoint 
coordinates from the eye tracker at time t : 

 

We also utilise a nonlinear autoregressive model 
termed ‘DeepVARX’, developed using the TensorFlow 
and Keras libraries, consisting of an autoencoder model 
with simultaneous convolved exogenous body input 
(see Figure 1C). Models were trained and predictions 
made both in open loop (Figure 1D, 1E) (only predicting 
1 data point ahead at a time) and closed loop (predicting 
multiple timepoints ahead)). We performed leave-one-
subject-out crossvalidation to minimize overfitting and 
increase inter-subject generalizability of results. 

 

 

Figure 1: A) Layout of recording system with with sensors 
located on suit. B) (Top) Full reconstruction of body 
kinematics with wireless motion tracking suit at 60Hz. (Bottom 
Left) Egovideo during task with gazepoint overlaid. (Bottom 
Right) Layout of experimental workspace with camera 
recording location. C) DeepVARX architecture showing 
convolutional layers. D) Open Loop and Closed Loop 
methodologies with exogenous body input. E) Autoregressive 
models combine prior gaze and body data to predict future 
gazepoints. 

Results 
 

Comparing the results of the linear model with the 
nonlinear, we find that in both open loop and closed 
loop the nonlinear model (DeepVARX) significantly 
outperforms the linear (Figure 2A, 2B). Whilst open loop 
prediction significantly outperforms closed loop overall, 
for online prediction systems, we would require 
predictions further ahead in time than 1/120th of a 
second, so closed loop is the more salient method in 
this regard. Incorporating body dynamics as an 
exogenous control signal (gaze and body dynamics 
predicting gaze) into our model improves closed loop 
rollahead prediction performance versus simple gaze 
autoregression (gaze dynamics predicting gaze), gaze 
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with white noise exogenous input, or gaze with head 
inputs alone, to an average of 1.5 seconds (Figure 2C). 
The models were trained both using body joint angles 
and angular velocities. We find that angular velocities 
hold significantly more predictive power than joint 
angles (Figure 2D). 

  

 

 
 

Figure 2: A) The nonlinear DeepVARX model significantly 
outperforms the linear VARX model in gaze prediction in open 
loop. B) The same result applies in closed loop prediction, 
where the nonlinear model predicts significantly better than 
the linear model. C) Average crossvalidated rollahead 
prediction of gaze with various exogenous control signals. 
Incorporating body angular velocities into prediction improves 
prediction performance of the nonlinear model, versus simple 
gaze autoregression. Additionally, gaze with exogenous white 

noise and gaze with exogenous head input perform 
significantly poorer, demonstrating the predictive power of the 
whole body, as opposed to just the head. D) Body angular 
velocities (AV) provide superior prediction performance 
versus joint angles (JA) or head angular velocity. 

 

Discussion 

Our results indicate the importance of the role of whole 
body kinematics in predicting gaze. This is likely due to 
the body dynamics holding task information implicitly. It 
is a possibility that angular velocities are the more 
useful input for gaze prediction due to the additional 
speed information contained within, versus simple joint 
conformation. It remains to be explored whether 
individual joints or particular subsets of joint 
combinations contribute more to this predictive power. 
We are working to refine and validate our model further 
and increase cohort size. 
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