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Abstract
Visual working memory experiments typically involve
asking a subject to memorize several visual stimuli such
as coloured shapes, oriented lines, faces, or objects.
Computational accounts of recall performance often as-
sume that each stimulus presented in a trial is encoded
independently, ignoring higher-level ensemble statistics
that have been shown to bias recall and impact task per-
formance. Here, we analyzed data from a delayed estima-
tion task that required the report of all stimuli (6 coloured
squares). We found evidence for serial dependencies
in within-trial reports, suggesting that participants clus-
tered similarly coloured stimuli together. These depen-
dencies were supported by estimates of the mutual in-
formation of within-trial report distributions. We present
a non-parametric clustering model to quantify the clus-
tering properties of randomly-generated stimulus arrays.
We believe this is a promising data-driven approach to
characterizing the statistical properties of experimental
stimuli. Together, these results provide further evidence
that humans encode ensemble statistics of visual scenes
in working memory.
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Background
The limited capacity of visual working memory (VWM) has
been studied extensively using various delayed estimation or
match-to-sample paradigms. A great deal of focus has been
placed on manipulating the VWM ”load” by having participants
memorize different numbers of discrete experimental stimuli.
There are several standard models of VWM performance that
can account for load effects (Ma, Husain, & Bays, 2014), but
these models assume that all stimuli are encoded into working
memory independently.

The visual world has a rich statistical structure, and recent
work has shown that people leverage the statistics of exper-
imental stimuli (broadly referred to as ensemble statistics) to
improve VWM performance (Brady & Alvarez, 2011). One way
this could be done is by clustering similar stimuli together to
reduce redundancy and improve encoding efficiency (Nassar,
Helmers, & Frank, 2018).

Evidence for the use of ensemble statistics in VWM has
largely come from experiments specifically designed to en-
able such strategies, but it is possible that people leverage

statistical regularities even when performing more traditional
VWM tasks with unstructured stimuli. Here, we re-analyzed
publicly available data from a recent experiment where partic-
ipants memorized and reported 6 coloured stimuli (Adam, Vo-
gel, & Awh, 2017; Figure 1). Despite the fact that colours were
randomly generated on each trial, we found evidence that par-
ticipants grouped similarly coloured stimuli together. We also
implemented a non-parametric clustering model to investigate
specific ensemble statistics that participants may have used.

Figure 1: Overview of the whole-report delayed estima-
tion task. (A) Participants viewed 6 coloured stimuli (the
memory array) for 150 ms. (B) Blank 1300 ms retention in-
terval. (C) Participants used a mouse to select a stimulus
location to report. (D) Participants clicked on the colour wheel
to report their memory of the colour at the selected location.
C and D were repeated for all 6 stimuli (unspeeded), and the
order of report was chosen freely by the participant.

Table 1: Notation

Symbol Meaning
θ set of true stimulus values
θ̂ set of reported stimulus values
P(θ̂i) empirical distribution of the ith report for all trials
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Figure 2: Within-trial joint report distributions. All data are collapsed across participants. (A) Each panel plots the report
distribution P(θ̂1) against another report distribution P(θ̂i). For example, in the top left panel each data point represents the first
and second report within the same trial. (B) Each panel plots the distribution of angular distances between the first report and a
subsequent report in the same trial. For example, the bottom left panel plots P(θ̂1− θ̂2).

Results
Within-trial colour reports are not independent
Adam et al. (2017) analyzed angular report error distributions,
and found that angular errors in late reports (ex. the 5th or
6th report at set size 6) were uniformly distributed (Adam et
al. 2017). A discrete item capacity limit interpretation of this
result is that participants had no information about the final
items they reported.

However, report error was only computed relative to the tar-
get item being reported, and ignored the trial context (such
as other items and reports in the same trial). To test the as-
sumption that item reports are independent, we examined the
relationship between reports made within the same trial. On
each trial the presented colours θ were uniformly sampled. If
all presented colours were encoded independently, within-trial
reports should be statistically independent.

Fig 2a includes reports from all trials and participants,
where each panel plots a joint distribution of the first report
and a subsequent report within the same trial (P(θ̂1, θ̂i)). Sim-
ilarly, each panel Fig 2b shows the distribution of angular dis-
tances between the first report and subsequent within-trial re-
ports (P(θ̂1− θ̂i)). Immediately consecutive reports (ex 1st
and 2nd; Fig 2, column 1) tended to have very similar colour
values, while later appeared to be biased away from earlier
reports (ex 1st and 5th; Fig 2, column 4). This pattern held for
all within-trial joint distributions (not pictured).

These distributions suggest that within-trial reports were not
independent. To quantify dependencies between within-trial
reports, we used mutual information (MI), a measure of de-
pendence between two random variables that does not as-
sume a particular functional relationship (Cover & Thomas,

2012). For each within-trial joint distribution P(θ̂i, θ̂ j), we com-
puted a mutual information ratio RI that estimates the amount
of mutual information relative to independent distributions (Fig
3, see Methods). Nearly all joint distributions (and especially
P(θ̂1, θ̂2)) contain more mutual information than would be ex-
pected if within-trial reports of stimuli in memory were inde-
pendent.

These results suggest that participants leveraged the en-
semble statistics of the arrays to perform the task. In partic-
ular, participants appear to have grouped similarly coloured
stimuli together.

Non-parametric clustering allows quantification of
memory arrays

As discussed above, it has been suggested that information
can be pooled across clusters of similar stimuli to improve
working memory performance (Brady & Alvarez, 2011; Nas-
sar et al. 2018).

To investigate the impact that colour clustering may have
had on task performance, we used a Dirichlet process mix-
ture model (DPMM; Neal, 2000) to characterize the stimulus
arrays presented. The DPMM assumes that stimuli on each
trial are generated in clusters, and partitions stimulus values θ

into K probable clusters based on colour similarity. Critically,
the model uses a Dirichlet process as a non-parametric prior
on possible clustering structure and therefore avoids making
a priori assumptions about the number of clusters present in
θ (see Methods).

The DPMM considers every possible partitioning of θ, and
provides a posterior distribution over K rather than ”hard” as-
signing the stimuli to specific clusters. Example posteriors for
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Figure 3: Mutual information ratio of all joint report dis-
tributions. The mutual information ratio is an estimate of the
mutual information I of P(θ̂i, θ̂ j) relative to the I of two inde-
pendent distributions (see Methods). Each point corresponds
to the RI for P(θ̂i, θ̂ j) where the colour of the point indicates i
and the x-axis indicates j.

three different θs are shown in Figure 4.
While we are still exploring the parameter space and clus-

tering properties of the DPMM, we believe that this non-
parametric approach is a promising analysis method with po-
tentially broad applications. In addition to providing a data-
driven quantification of the clustering structure of randomly
sampled arrays, DPMMs could also be used to generate stim-
uli with specific properties. This class of models can also
be easily extended to multiple dimensions, and DPMMs have
been successfully used for 2-dimensional spatial clustering
(Lew & Vul, 2015).

Conclusion
Our results contribute to the growing body of work suggesting
that humans leverage the ensemble statistics of visual scenes
to aid visual working memory. By considering the joint distribu-
tions of within-trial reports rather than individual report errors,
we found evidence that people group to-be-remembered stim-
uli by colour even when the stimuli are randomly generated
and presented in a far from naturalistic task setting.

This finding could be strengthened by continued develop-
ment of the non-parametric clustering model presented here.
Data-driven approaches to characterizing visual stimuli have
many desirable properties, and in the future could allow for
the use of more statistically complex or naturalistic scenes in
visual working memory experiments.
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Figure 4: Example trials and DPMM output. Left panels
show example colour values θ from 3 trials. Right panels dis-
play the accompanying posterior distribution over the number
of generating clusters K. In the top trial, the model assigns
a high posterior probabilty that K = 2, while in the bottom
panel the highest probability is assigned to partitions where
K = 3. The middle trial includes colours that are more evenly
distributed, and as a result the model assigns more evenly
distributed probabilities to values of K.
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Awh for making their experimental data publicly available and
therefore for making this project possible.

Methods

Whole-report delayed estimation task

Here, we only considered a subset of the data collected by
Adam et al. (2017). Specifically, we restricted analysis to tri-
als with 6 coloured stimuli where participants were permitted
to choose their response order. For trial outline and timing,
refer to Fig. 1. For complete experimental details refer to
the original publication (Adam et al. 2017; Experiment 1a).
All data and code for the original publication is available at
http://www.osf.io/kjpnk.

Colour stimuli The colours presented on each trial were
randomly drawn with replacement from a set of 360 colours.
The colour set was chosed from equidistant points around a
circle in CIEL*a*b* colour space centered at L = 54, a = 18,
and b = -8. CIEL*a*b* space was designed for perceptual uni-
formity, and as such we treat each colour as an angular value
along the continuous circular dimension (−π,π).

Mutual information ratio

The mutual information I of each pair of report distributions
(P(θ̂i),P(θ̂ j)) was estimated using the standard summation
method for two jointly discrete random variables (Cover and
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Thomas 2012).
The mutual information ratio RI was computed by drawing

a sample of U ∼Uniform(−π,π) equal in size to a given em-
pirical report distribution P(θ̂i). The ratio for reports (i, j) is
then:

RI(P(θ̂i),P(θ̂ j)) =
I(Θ̂i,Θ̂ j)

I(Θ̂i,U)
(1)

where P(θ̂i) and P(θ̂ j) are empirical realizations of the ran-
dom variables Θ̂i and Θ̂ j. This ratio has an intuitive interpre-
tation: because the uniform random variable U is statistically
independent of a given report distribution, the mutual informa-
tion of P(θ̂i) and a sample drawn from U will be very close
to 0. If RI(P(θ̂i),P(θ̂ j)) ≈ 1, this is evidence that P(θ̂i) and
P(θ̂ j)) are independent. If RI(P(θ̂i),P(θ̂ j)) > 1, there is evi-
dence for statistical dependency.

In practice, 1000 samples were drawn from U for each com-
parison to a distribution P(θ̂i). The mean of all estimated val-
ues I(Θ̂i,U) was used to compute the ratios in Fig. 3, but
using a greater estimate (mean + 1 standard deviation) did
not change the reported effect.

Dirichlet process mixture model
Note: Above, P(θ̂i) refers to the ith report distribution. This is
not to be confused with θi, which we will use here to denote a
single colour value from the set θ.

A Dirichlet process mixture model (DPMM) was used to
infer posterior distributions over all possible clusterings of
colours presented in a single trial. The DPMM assumes
that the colour values θ in a given trial are sampled from a
weighted mixture of infinite components. For a single colour
value θi the model assumes:

θi ∼ vonMises(µi,κi) (2)

where µi and κi are the mean and precision of the von Mises
component that generated θi. The probability density function
of the von Mises (circular normal) distribution is given by:

vonMises(θi | µi,κi) =
eκi cos(µi−θi)

2πI0(κi)
(3)

where I0(κ) is the modified Bessel function of order 0.
Rather than estimating a priori the number of components

that generated the colours θ1:6 on a given trial, we assume
that µi and κi are drawn from a countably infinite discrete dis-
tribution G, which itself is distributed according to a Dirichlet
process (DP):

µi,κi ∼ G (4)

G∼ DP(G0,αDP) (5)

where G0 (known as the base distribution) represents the prior
over the joint distribution of µi and κi:

G0(µi,κi) = Uniform(µi;−π,π)Gamma(κi;ακ,βκ) (6)

and αDP is a concentration parameter that influences the dis-
tribution of component weights. We initialized αDP0 = 1, which

is the equivalent of a uniform prior over the distribution of
weights. For a more detailed treatment of Dirichlet process
properties, see Neal (2000).

The DPMM described above is inspired by the DPMM de-
veloped by Orhan and Jacobs (2013), but differs in two key
ways. First, we have omitted the final level of inference in-
volving noisy observations. Second, Orhan and Jacobs used
Gaussian components; here, we have adapted the model and
sampling routine for circular von Mises components.

Markov Chain Sampling
Samples from the posterior distribution of the DPMM were
generated via Gibbs sampling with auxiliary parameters (Neal
2000; Algorithm 8). This algorithm enables sampling from DP-
MMs with non-conjugate priors by representing the conditional
prior distribution for each observation with ζ auxilliary compo-
nents. 4000 iterations of the sampler were performed for each
stimulus set θ.

Table 2: DPMM Parameters (Figure 4)

Parameter Description Value
ακ parameter of Gamma prior on κ 2
βκ parameter of Gamma prior on κ 1
αDP0 initial DP concentration parameter 1
ζ # aux. components (Gibbs sampler) 2
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