Modular RL for Real-Time Learning in Physical Environments

Per R. Leikanger
UiT - the Arctic University of Norway
Troms, Norway
Per.LeikangerQuit.no

Abstract

Reinforcement Learning is a powerful approach to a ma-
chine learning from interaction with the environment. Re-
cent impressive achievements show the potency of com-
bining Deep Learning with RL for board games and sim-
ple visually oriented tasks, but similar feats seem to wait
for physical systems. We ask ourself for the reason(s)
for this apparent hole in the science, on our path toward
adaptive automata for physical domains.

Inspired by computational systems in biology, revisit-
ing conceptual fundamentals of Reinforcement Learning,
and dividing complex tasks into numerous parallel learn-
ers, we aim to lessen this effect for physical interaction. A
simple demonstration of an algorithmic framework is im-
plemented, creating an agent that learns complex reac-
tive behavior in a continuous parameter space by tabular
RL methods. We conclude with a discussion on possi-
ble implications from this work for adaptive agents in the
physical world, and plausible further directions toward
life-long learning.

Keywords— Reinforcement Learning, Robot, Sam-
ple Efficiency, Distributed Learning

Learning in Physical Environments

Reinforcement Learning (RL) methods rooted in Dy-
namic Programming (DP) have proven to be effective
learning algorithms for decision making in environments
with unmodelled or complex system behavior. A prime
example of this would be for games, where modelling
opponent behaviour with formal methods can be chal-
lenging. Multi-layered graph-based function approxima-
tion (e.g. deep networks) can be used to estimate the
value of a state or a state-action pair, and the two ma-
chine learning methodologies appear to create a syn-
ergy effect toward something greater.

Physical interaction can, however, be challenging for
these modern function approximation techniques due
to sample-sparseness; Deep Learning or other super-
vised learning techniques require a large set of labelled
samples to form appropriate signal approximation. The
importance of safe exploration, constraints due to slow
system dynamics’, degradation with use?, combined
with requirements for large number of samples might all
contribute to the limited use of DRL for physical systems
(Amarjyoti, 2017).

Knowledge on how spacial orientation is represented
in the hippocampus of the mammalian brain (Moser,

Al physical actuation can be considered slow relative to
what is possible for purely digital environments, primarily be-
ing limited by available computational power.

2due to wear-and-tear

Kropff, & Moser, 2008), might serve as inspiration when
trying to create a real-time learned for physical interac-
tion; By approaching orientation in a continuous param-
eter space with methods inspired by orientation in mam-
mals, combined with the intrinsically distributed mech-
anism for biological computations, general value func-
tions (GVFs) (Sutton et al., 2011), and the /d concept
from Psychoanalysis (Freud, 1940), we aim to creat-
ing a distributed agent inspired by this beautiful com-
plex system comprised of very simple building blocks.
We argue further that the resulting orientation can be
seen as being general for any N-dimensional contin-
uous parameter space, and show a simple example
of how learning can happen individually across state
spaces.

Theory

Tabular Q-learning(Watkins, 1989) is a good entry point
for RL due to its comprehensible approach to learn-
ing(adapt decisions to experience). Here, a scalar rep-
resenting the quality of doing an action in a given state
is saved for later to be used for action selection. The
Q-value is updated according to the Bellman equation

Qs0,a) ¢ (1~ @)Q50,a) + afry + 7 max Q(sys1,a)]

For every passing through any state s, the quality of
an action a is updated with the immediate reward (r,,),
potential future reward max, Q(sn+1,a),

For large state spaces or complicated reward
schemes, this algorithm can be difficult to apply directly
due to the number of visits necessary for a good pol-
icy representation. The number of samples(visits) nec-
essary is shown to be exponential with the number of
states(Sutton & Barto, 1998), and function approxima-
tion by modern multi-layered graph-based function ap-
proximation techniques can be utilized to remedy this.
Deep learning have on multiple occasions proved capa-
ble for generating agents with good policies, particularly
in games or simple digital environments with huge state
sets.

For physical systems, it can, however, be difficult to
gather the number of labelled examples necessary for
proper value function approximation as seen in promi-
nent works in the RL literature. Considering one of the
largest feats in Deep Learning RL, AlphaGo, where we
read about millions of complete roll-outs to train the pol-
icy network of the agent (Silver et al., 2016), similar

1079

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0



feats by this technology seems improbable for physi-
cal systems. Picking up an objects with uneven edges
seem to be the state of the art for learned physical inter-
action under these technologies; Complex policies re-
quire more samples, a likely reason why deep RL ap-
proaches fail to handle elaborate policies for robotics
(Amarjyoti, 2017);

Toward Physical Learning Efficiency

On the path toward learning for physical interraction,
learning efficiency is perhaps the most important bar-
rier for applicable learning systems. Aiming to remedy
this, consider a simple, effective method for increasing
sample efficiency by letting multiple training challenges
run in parallel. We could, for example, take inspiration
from the Horde architecture from (Sutton et al., 2011);
By having multiple sub-agents (“daemons”), each with
its own goal and corresponding value function, off-policy
learning can happen simultaneously and individually for
all. If we let the agent’s policy be formed as an aggre-
gate over all daemons’ policy, where each daemon con-
siders a much simpler challenge than for an equivalent
monolithic agent, this could further decrease learning
time if sub-policies can be combined to create a coher-
ent super-policy.

Separation of Concerns (van Seijen, Fatemi, Ro-
moff, & Laroche, 2016), and Hybrid Reward Architec-
ture (HRA) (Van Seijen et al., 2017) take up this notion
and have looked at similar concepts for splitting up the
state space into smaller sub-problems for the game of
Ms. PacMan. One could take inspiration from these
ideas, while also remembering that continuous systems
enable additional capabilities® due to conservation laws
and continuity.

Learning the Environment and Synthetic Ids

The state concept implies a separable categorization of
the world into groups representing focus points based
on characteristics of importance; We'll call this “a state”
in the considered environment representation, and can
define the state of any entity of interest by its exact
“world” parameter configuration (see fig. 1).

Consider first a simple grid representable problem —
to bring the situated entity to one particular parameter
configuration. Grid coding(Sutton & Barto, 1998) as il-
lustrated in fig. 1 is a simple discretization scheme for
this problem. The task could be seen as a basal desire
for the agent, and the policy for this basal desire could
be trained by off-policy Q-learning.

3Being continuous exposes certain characteristics and pro-
hibits others, e.g. discrete jumps for parameters are not pos-
sible for physical systems, something that could be taken into
account.

Figure 1: Example of N5 representation of a 2D (contin-
uous) parameter space by grid coding, splitting each pa-
rameter into 5 discrete steps. The blue dot would have a
state (1,3) in this parameter set; 25 different challenges
could be defined in this representation, e.g. “go to posi-
tion (4, 4)".

Id Priority

Let there be K = N x N such learning tasks, one for
each state in this representation. Contrary impulses
could then co-exist side by side, learning how to achieve
their respective obsessive state. We will refer to this
specific type of basal drive as “Id” referring to Freud’s
description of a distinct, yet interactive agents in the
psychic apparatus(Freud, 1940), as defined in his struc-
tural model of the psyche. Since each /d is learning how
to get to a particular state in one environment represen-
tation, we refer to this activity for the agent comprised
of these Ids as learning the environment.

Let there further be a scalar weight W associated with
each /d, representing how much a (super-)agent is “lis-
tening” to a particular /d’s opinion for the next action
selection. All Ids with a positive W would contribute
to pulling the agent toward their obsessive state, mak-
ing the weighted sum represent a daemoncratic deci-
sion basis for the next action. We could think of this
as a Q-field that represents the experience-based cor-
relations formed over many /ds. At any moment, the
learned Q-field represents the aggregated Q value in
this environment representation, enabling action selec-
tion to be based on the input from a dynamic number
of Ids according to the current attention scheme of the
agent.

Experimental Setup

Development and testing of the presented theory has
been done in a digital sand-box environment with cer-
tain real-world characteristics. PyGame’s WaterWorld
challenge (Tasfi, 2016) is a “game” with simple rules, but
slightly convoluted mechanisms involving inertia. The
task is to control a blue dot (“creep”) in a continuous
2D plane such that green creeps are captured and red
creeps avoided (see lower layer in fig. 2). When a creep

1080



\
AN
\

\ AN
N N
\\ ‘\x
f\\\ " =

Figure 2: lllustration of Multi-Shepherd state represen-
tation / multiple discretization representations acting in
parallel. [Red] N3 representation [Blue] N7 representa-
tion [Black] N23 representation. An R/B/B dot is marked
for each representation’s state corresponding to the
agent’s exact location.

is encountered, one receives a reward of +1 for green
and —1 for red, before they reappear with a random lo-
cation, speed, and demeanor(color). When there are
no green instances left, the board is reset and a reward
of +5 is received. 8 simultaneous creeps are used in
for the experiments in this work, as shown in the bottom
plane of fig. 2.

All results presented here comes from learning reac-
tive control with 1-step lookahead for I/d policies with
no prior knowledge. The binary sparse nature of the
reward signal/ score makes signal processing impor-
tant before reults is presentable; The main experiment
in this work is performed by performing 100 individ-
ual runs of the 4 considered agents. Experiments pre-
sented in fig. 3 is done with single runs because of long
execution time for the higher resolutions. Cumulative
sum is a robust signal processing approach and con-
sidered acceptable for illustrating how learning speed
varies with the resolution of the environment represen-
tation (N5, N10,...).

Unfortunately, no reports on RL agents that solve this
problem have been found for comparison, and the task
is considered to be a development platform and proof-
of-concept toward real-world RL applications.

Results and Discussion

Our first verification of the effect of Id Shepherd learn-
ing on sample efficiency can be seen in fig. 3. We see
that complex reactive behaviour (following or avoiding 8
simultaneous “creeps”) is expressed by a positive gradi-
ent for cumulative score. Any result higher than (on av-
erage) 9 points (including completion reward) requires
the agent to catch all green creeps for board reset. With
creeps being respawned with a random color after every
encounter, a total score of 1.000—4.000 points during be-
fore 150.000 time steps of these agents’ life is impressive

for this problem complexity. Note that the last instance
of a green creep must be caught among [8 — 1 = 7]
reds before every board reset and that all behavior is
learned!

Figure 3: Accumulated Reward for runs with different
shepherd resolutions, N5—N90 over 150.000 time steps.
Lower-resolution Shepherd quickly becomes proficient
but learning goes into saturation (integral becomes lin-
ear — see N5). The shape of the N50+ curves indicates
that there is still learning going for these representations
in this time-frame.

For a first indication on interdimensional learning effi-
ciency we can see the result of learning across multiple
environment representations in fig. 4. The experiments
are by agents designed like individual layers and the
combination agent as presented in fig. 2. Curves illus-
trate the immediate proficiency of agent during the very
first 50.000 time steps for each agent, represented as
the per-timestep reward as a function of time. Agents
start from scratch with no prior experience or hidden
hyper-parameter settings; All aspects of these exper-
iment are identical except for Shepherd composition,
making this an interesting case for comparing a poten-
tial efficiency increase from the individual policies by
composition.

By following a prioritized sum across multiple state
representations, the agent actually demonstrates a
higher proficiency for this task than an algebraic sum of
separate runs of single-Shepherd agents. This is con-
sidered particularly impressive due to the non-linearity
mentioned as the “9-point-barrier”. Despite of this hy-
pothesized favorization due to saturation mechanisms,
the Multi-Shepherd learning agent actually learns faster,
to a higher proficiency, than the sum of its components.

Concluding Remarks

This work shows us how a distributed design inspired
by nature can help toward modularity in RL, prioritized
aspect learning, and ability to alter the set of agent en-
vironment representation over time. The resulting agent

1081



0.025

arning {3,7,23}
ummed R from Shepherd N3, N7, and N23)

0.020

0015

[R/ time step)

0.010

0.005

0.000

0 10000 20000

30000 40000 50000

[time steps]

Figure 4: Proficiency of following policy generated by the individual Shepherds, and the joint policy constructed by
the design in fig. 2. All lines are a mean over 100 individual runs for the respective experiment.

concept has been demonstrated for an environment
with 2 continuous parameters with inertia, and the hy-
pothesized real-time learning capabilities are illustrated
for a simple agent over 3 prioritized sub-agents, consist-
ing of 587 parallel learners, over different environment
representations.

Our experiments show that by following in interdimen-
sional policy, i.e. a combination of policies across state
spaces, the agent achieved a higher proficiency at the
task than the summed score of agents following policies
generated by equivalent sub-components. The capabil-
ity of dynamically extending the number of considered
elements at any time is still considered to be the most
important contribution of this work. These results imply
that the agent can be adapted with a changing envi-
ronment and over different parameter spaces, as well
as that novel aspects of a task can be learned or intro-
duced at any time.

References

Amarjyoti, S. (2017). Deep reinforcement learn-
ing for robotic manipulation - the state of the
art. CoRR, abs/1701.08878. Retrieved from
http://arxiv.org/abs/1701.08878

Freud, S. (1940). An outline of psychoanalysis (vol. 23).
Standard Edition (J. Strachey), 198.

Moser, E. I., Kropff, E., & Moser, M.-B. (2008). Place
cells, grid cells, and the brain’s spatial representa-
tion system. Annu. Rev. Neurosci., 31, 69-89.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre,
L., Van Den Driessche, G., ... others (2016).

Mastering the game of go with deep neural net-
works and tree search. Nature, 529(7587), 484—
489.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement
learning: An introduction. MIT press.

Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pi-
larski, P. M., White, A., & Precup, D. (2011).
Horde: A scalable real-time architecture for learn-
ing knowledge from unsupervised sensorimotor
interaction. In The 10th international conference
on autonomous agents and multiagent systems-
volume 2 (pp. 761-768).

Tasfi, N. (2016). Pygame learning environment.
https://github.com/ntasfi/PyGame-Learning-
Environment. GitHub.

van Seijen, H., Fatemi, M., Romoff, J., & Laroche, R.
(2016). Separation of concerns in reinforcement
learning. arXiv preprint arXiv:1612.05159.

Van Seijen, H., Fatemi, M., Romoff, J., Laroche, R.,
Barnes, T, & Tsang, J. (2017). Hybrid reward
architecture for reinforcement learning. In Ad-
vances in neural information processing systems
(pp. 5392-5402).

Watkins, C. J. C. H.
rewards.

(1989). Learning from delayed

1082



