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Abstract
What algorithms do people use to make decisions with fu-
ture consequences in complex environments? In order to
investigate the cognitive processes underlying sequen-
tial planning, we collected large-scale behavioral data in
a challenging variant of tic-tac-toe. This task is at an in-
termediate level of complexity, providing rich behavior for
which modeling is still tractable. We argue that a data
set of this nature is necessary for distinguishing theo-
retical frameworks for integration between prospective
and retrospective decision-making, and show preliminary
evidence for the existence of both systems in our task.
We outline a computational model based on an intuitive
value function and decision tree search to demonstrate
that people engage in prospective planning. We then ex-
plain discrepancies between the model’s predictions and
observed data in early game choices, finding behavioral
patterns consistent with retrospective learning.

Keywords: sequential decision-making; planning; reinforce-
ment learning; behavioral modeling

Introduction
Reinforcement learning (RL) is arguably the most successful
theoretical framework available for explaining human sequen-
tial decision-making and planning (Sutton & Barto, 2018). A
central finding in the human RL literature is that people can
select actions by combining information from prospective and
retrospective systems. To choose an action in a given state,
the prospective system mentally simulates the consequences
of possible actions multiple steps into the future, whereas the
retrospective system considers the outcome of actions taken
in the same or similar states in past experience. These dual
systems have been discussed under various names and im-
plementations, such as deliberative and habitual (Dolan &
Dayan, 2013), goal-directed and Pavlovian (Huys et al., 2012),
and model-based and model-free (Daw et al., 2005). In gen-
eral, the prospective system is slow and computationally ex-
pensive, but can determine high-value actions from any state,
including ones that the agent has never previously encoun-
tered. On the other hand, the retrospective system is fast but
needs previous experience to inform its policy.

One outstanding question is how people combine informa-
tion from these systems or decide whether prospective plan-
ning is worthwhile in terms of time and computational re-

sources. This meta-level decision may be based on uncer-
tainty estimates provided by both systems (Daw et al., 2005),
the historical accuracy of their predictions (Kool et al., 2017),
or estimation of the value of information gained by planning
(Callaway et al., 2018; Sezener et al., 2019). A related prob-
lem is how these systems can benefit from each other’s com-
putations. An appealing framework for integrating prospective
planning and retrospective learning is amortization (Dasgupta
et al., 2018), in which the agent re-uses simulated experience
from the prospective system as additional training data for
the retrospective system. Similarly, the retrospective system
might influence the prospective system by adapting its internal
models and search heuristics.

Here, we establish that people engage in prospective plan-
ning by fitting a computational model to their choices in a com-
binatorial game. We illustrate two behavioral patterns that the
model fails to predict, but which are consistent with retrospec-
tive learning. While we have not yet developed a complete
theoretical framework to fit our data set, we argue that its size
and complexity is necessary for understanding the integration
of prospective and retrospective RL in a naturalistic setting.

Task
An ideal experimental task for comparing models of prospec-
tive and retrospective integration needs to satisfy multiple con-
ditions:

1. The task needs to be novel, so that participants start with
uninformed priors to initialize their retrospective system.

2. The task needs to exhibit a large state space so that par-
ticipants will continually encounter novel states irrespective
of experience level, thereby necessitating prospective plan-
ning.

3. The task needs to contain a natural division into phases
where either prospective or retrospective strategies are
likely to be more effective.

4. Participants need to perform the task over long periods of
time, since shifts between strategies might require exten-
sive experience.

5. The data set needs to contain many participants, so that
some states occur often enough to enable nuanced statis-
tical analyses of people’s changing action distributions.
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We designed a combinatorial game in which two players
alternate placing pieces on a 4-by-9 board, attempting to con-
nect 4-in-a-row. The game has a large state space (1.18∗1016

possible states), and naturally encourages people to adopt
retrospective strategies for early-game moves and prospec-
tive strategies in the middle and late game (Figure 1A). In the
opening, forward search is inefficient, since a decision tree
leading to terminal states is necessarily deep and wide. Infor-
mative heuristics are also difficult to find, as the empty board
contains no patterns. The user always plays first, so opening
sequences are likely to repeat across different games, and
people can learn an opening policy by trial-and-error. In other
words, people are encouraged to develop an “opening book”:
a tabular representation of state-action mappings which can
be updated by model-free RL. By contrast, in the middle and
late game, positions are unlikely to ever repeat, but board
states tend to contain more patterns and be closer to terminal
states, favoring forward planning over retrospective learning.

Additionally, we partnered with Peak, a cognitive exercise
company based in London, to implement the game on their
mobile platform (https://www.peak.net). We are currently col-
lecting data at a rate of 1.5 million games per month, and
here we analyze a subset consisting of approximately 3.2 mil-
lion games from 430,000 unique users. Users play against
an AI agent implementing a version of our computational
model, with parameters adapted from fits on previously col-
lected human-vs-human games (van Opheusden et al., 2017).

Computational model

In order to demonstrate that users engage in prospective plan-
ning, we developed a computational model which combines
tree search with a feature-based value function, stochastic
feature dropping, and value-based pruning (van Opheusden
et al., 2017).

Value function

The core component of our model is an evaluation function
V (s) which assigns values to board states s. We use a
weighted linear sum of 5 features: center, connected 2-in-a-
row, unconnected 2-in-a-row, 3-in-a-row and 4-in-a-row. The
center feature assigns a value to each square corresponding
to inverse Euclidean distance from the board center, and sums
up the values of all squares occupied by the player’s pieces.
The other 4 features count how often the associated pattern
occurs on the board. We associate weights wi to these fea-
tures, and define

V (s) = cself

4

∑
i=0

wi fi(s,self)− copp

4

∑
i=0

wi fi(s,opponent)

where cself =C and copp = 1 when it is the player’s move, and
cself = 1 and copp =C when it is the opponent’s move. C cap-
tures value differences between active and passive features.
For example, a three-in-a-row feature signals an immediate
win on the player’s own move, but not the opponent’s.

Figure 1: Model performance. (A) An example board with
model predictions. The red shading indicates the probability
distribution of the model’s move prediction and the open cir-
cle indicates the user’s move. (B) Histogram of the difference
between cross-validated log-likelihoods per move for the plan-
ning and myopic models. (C) Average user response times
(blue) and average number of model iterations (red) taken to
make a move throughout gameplay. Axes are scaled by the
maximum value in each set of averages for visualization pur-
poses, and shading denotes s.e.m.

Tree search

The evaluation function guides the construction of a decision
tree with an iterative best-first search algorithm. Each itera-
tion, the algorithm chooses a board position to explore, evalu-
ates the positions resulting from each legal move, and prunes
all moves with value below that of the best move minus a
threshold θ. The algorithm has a stopping probability γ, result-
ing in a geometric distribution over the number of iterations.

Noise

To account for variability in people’s choices, we add three
sources of noise. Before constructing the decision tree, we
randomly drop features at specific locations and orientations,
which are omitted during the calculation of V (s). During tree
search, we add Gaussian noise to V (s) at each node. Finally,
we include a lapse rate λ.

Model fitting
When fitting the computational model to behavioral data, we
infer parameters for individual users with maximum-likelihood
estimation. The model has 10 parameters: the 5 feature
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Figure 2: The probability that users repeat a move directly after a loss, draw, or win given different board states and the
distribution of the selected moves. Error bars denote s.e.m. The user piece is in black while the AI piece is in white. (A) The
opening move. (B) The third move following the most frequent 2-piece board states. (C) The fifth move following the most
frequent 4-piece board states. (D) The seventh move following the most frequent 6-piece board states.

weights, the active-passive scaling constant C, the pruning
threshold θ, stopping probability γ, feature drop rate δ, and the
lapse rate λ. We estimate the log probability of a user’s move
in a given board position with inverse binomial sampling, and
optimize the log-likelihood function with multilevel coordinate
search. We account for potential overfitting by reporting 5-fold
cross-validated log-likelihoods, with the same testing-training
splits for model comparison.

Results

Evidence for prospective planning

The average accuracy of the computational model’s predic-
tions on the hold-out data is 23.5±0.8%, which is much better
than chance (5±0.1%). To test whether the tree search com-
ponent is necessary to fit human choices, we compared the
model’s log-likelihood per move with that of a myopic model.
In the myopic model, we fix γ to 1, which implies that the
tree search terminates after a single iteration. Because model
fitting and comparison is computationally taxing, we ran this
analysis on 50 pseudo-randomly selected users. The cross-
validated log-likelihood per move of the computational model
is significantly higher across users than that of the myopic
model (t = 6.69, p = 2∗10−8, Figure 1B), demonstrating that
tree search is indeed necessary to predict people’s moves.

Discrepancies between data and the model

One major difference between the model and our observed
data is predicted response times. Previously, we found that
people’s response times correlate on individual trials with the
number of model iterations (van Opheusden et al., 2017).

However, their average trend over the course of a game dif-
fers considerably (Figure 1C). Early in gameplay, the model
predicts that people search larger decision trees and thus
have longer response times, but the data shows the opposite.
Therefore, it is likely that in situations where the board is fairly
empty and no player can immediately win the game, there is a
faster retrospective process that takes place before prospec-
tive planning begins. In the middle and late game, response
time trends roughly follow model predictions.

Evidence for retrospective learning
The size of our data set allowed us to uncover clear evidence
for retrospective learning in early-game positions. We found
that users were significantly more likely to repeat their open-
ing moves following wins rather than losses, and that these
moves were primarily distributed in the center or corners of
the board (Figure 2A). This effect continued on the third move,
where users most often elected to play in the center positions
closest to the two pieces already on the board (Figure 2B).
On the fifth and seventh moves, however, the proportion of
move repetitions based on game outcome decreased, and
varied by specific board position despite consistent move se-
lections (Figure 2C,D). These population-wide trends suggest
that people make decisions partially based on whether or not
an opening strategy was successful in previous games in their
first two moves, and then begin to utilize alternative strategies
in subsequent moves when board positions are more likely to
be unique.

Next, we show that response times in early stages of a
game also follow patterns predicted by retrospective learning.
This was similarly mediated by previous game outcome: user
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Figure 3: User response times. Error bars and shading denote s.e.m. (A) Average response times across the first 7 moves
of a game directly following a loss, draw, or win. (B) Average response times on the third move as a function of repeated 2-
piece board states (blue), and the average response time of 1000 randomly sampled users that had previously played the same
number of games (red). (C) Average third move response times as a function of the number of games in the past that the same
2-piece board state occurred (blue) compared to novel 2-piece board states (red).

response times across the first 7 moves were, on average,
longer after losses rather than wins (Figure 3A). Furthermore,
third move response times decreased significantly when users
encountered repeated 2-piece board states (Figure 3B). This
could be a confounded result, since on average users play
faster after playing multiple games regardless of which states
occurred. Therefore, we ran a control in which we sampled
the average response times of other users that had played the
same number of games, explaining some of the effect but not
all. Finally, we verified that the effect was not solely due to re-
cent memory of encountered states. We averaged third move
response times based on the number of games in the past
that the same 2-piece board state occurred, and found that
response times were consistent regardless of how long ago a
given state had been seen (Figure 3C). These response times
were also drastically lower than for novel 2-piece board states.

Discussion

In this article, we analyze human behavioral data in a two-
player combinatorial game, and find strong evidence for both
prospective planning and retrospective learning. We demon-
strate that a computational model based on a forward search
algorithm fits human choices well in the middle and late game,
but not the early game. However, we find that people’s early-
game moves as well as their response times are affected by
the outcome of previous games in which they encountered
the same board positions. These results demonstrate that
people learn from past experience and are consistent with
many retrospective learning algorithms, ranging from simple
win-stay-lose-shift to sophisticated policy gradient methods.
Our findings suggest that people strategically integrate infor-
mation from a prospective and a retrospective system, and
that a data set of this nature is essential for differentiating be-
tween existing theoretical frameworks of prospective and ret-
rospective integration.
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