
Testing Computational Models of Goal Pursuit

Florian Mohnert, Mateo Tošić, Falk Lieder
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Abstract
Goals are essential to human cognition and behavior.
But how do we pursue them? To address this question,
we model how capacity limits on planning and attention
shape the computational mechanisms of human goal pur-
suit. We test the predictions of a simple model based on
previous theories in a behavioral experiment. The results
show that to fully capture how people pursue their goals
it is critical to account for people’s limited attention in ad-
dition to their limited planning. Our findings elucidate the
cognitive constraints that shape human goal pursuit and
point to an improved model of human goal pursuit that
can reliably predict which goals a person will achieve and
which goals they will struggle to pursue effectively.
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Introduction
Human behaviour and cognition are fundamentally goal di-
rected (Carver & Scheier, 2001). It has been proposed that
goals serve to simplify complex decision problems so that
people can solve them more effectively despite their limited
computational resources (Lieder & Griffiths, 2019). Optimal
goal pursuit entails many computationally intractable prob-
lems (Bourgin, Lieder, Reichman, Talmon, & Griffiths, 2017).
The brain has to somehow approximate these solutions within
the constraints of its bounded computational resources.

Previous work on human problem solving (Newell, Simon,
et al., 1972) suggested that rather than making a complete
plan for how to achieve their goal people often just look a sin-
gle step and choose their action based on a heuristic estimate
of resulting reduction in their distance to the goal. Further-
more, recent work on human decision making has highlighted
that people’s decisions are highly constrained by their limited
attentional resources (Gabaix, 2014). Despite these and other
insights (O’Doherty, Cockburn, & Pauli, 2017), there are still
no definite computational models of how people pursue their
goals in complex dynamic environments.

Here, we leverage the principle of resource-rationality
(Lieder & Griffiths, 2019) to derive a model of how cognitive
constraints shape the computational mechanisms of human
goal pursuit. We test the resulting models against people’s
performance in a newly developed paradigm for studying how
people pursue goals in complex dynamic environments. we
find that our model correctly predicts which goals people will
achieve easily and which one’s they will fail to achieve. This is
a significant step towards a grounding recommendations and
tools for helping people to set better goals into computational
models of human goal pursuit.

A simulated-microworld paradigm for studying
goal setting and goal pursuit

Researchers interested in how people solve complex prob-
lems introduced Simulated Microworlds (SMWs) (Brehmer &
Dörner, 1993) as a more realistic alternatives to the puzzles
that were predominant in the problem-solving literature at the
time. Simulated microworlds are complex dynamic systems
that model situations from real-life. In a SMW human partici-
pants might, for example, manage a fictional airline company
over the course of 5 years and at each timestep t (e.g. days,
months etc.) humans intervene with the system by manipulat-
ing a set of exogenous variables such as the current salary of
the service staff or buying a certain amount of fuel and then
observe the corresponding changes in the environment state
or endogenous variables such as revenue or customer satis-
faction of the company. The SMW conceived for our experi-
ments are based on simple systems of linear equations like in
(Funke, 1993). Formally, a simulated microworld consists of a
a set of De exogenous variables ei, ...,eDe and a set of Ds en-
dogenous variables si, ...,sDs whose dynamics over time are
determined by a system of linear equations, that is

st+1 = f (st ,et) = A · st +B · et , (1)

where the vectors st and et contain the current values of the
endogenous and exogenous variables respectively. The ma-
trix A is in RDs×Ds and matrix B in RDs×De . Matrix A deter-
mines both the eigendynamics of the system (i.e. how vari-
ables affects themselves from t to t + 1) and also side effect
(i.e. how variables influence other variables from t to t+1). Ma-
trix B on the other hand determines the effect of the human in-
tervention of the exogenous variables on the endogenous vari-
ables. The task posed to participants is to reach a certain goal
state of the endogenous variables. We define a goal g by two
vectors namely a location gl and a scale gs. The location com-
ponents are the desired states of the system and the scale
components define a diagonal covariance matrix S a standard
deviation around the desired states, defining how specific the
goal is (i.e. how close one needs to get in order to reach it).
An appropriate distance measure to determine how close a
given endogenous state st is to a goal g is the standardized
Euclidean distance, d(st ,g) =

√
(st −gl)T S−1(st −gl) This

distance measure can be used to define a threshold ω for
goal achievement, that is a goal g is reached at timestep t
if d(st ,g)< ω.

While simulated microworlds have previously been used to
study problem solving (Brehmer & Dörner, 1993), managerial
or other trainings, we present a way of using them to study
goal setting and goal pursuit.
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Models of goal-pursuit
Previous work problem solving emphasised that people’s abil-
ity to achieve their goals is bounded by people’s limited plan-
ning horizon (Simon & Newell, 1971). Recent work on eco-
nomic decision-making emphasised the role of limited atten-
tion (Gabaix, 2014). Here we consider how both of these con-
straints might jointly shape how people pursue their goals.

Limited planning leads to hill-climbing

Unlike strategies that plan multiple steps ahead, hill-climbing
myopically chooses one step at a time based on the immedi-
ate reduction in the (perceived) distance to the goal. The strat-
egy of hill-climbing has been previously proposed as a pro-
cess model of how humans solve problems (Simon & Newell,
1971). People’s reliance on this strategy might reflect that
planning is costly and can only be performed for a limited num-
ber of steps.

In a SMW hill-climbing amounts to setting the exogenous
variables such that the distance between the endogenous
variables st and the goal g is minimized. More formally, a
hill-climbing agent arrives at it’s new exogenous inputs et+1
by taking a step in the direction of the negative gradient of the
distance w.r.t. the exogenous inputs, that is

et =−λ ·∇et d(st+1(et),g)|et=0, (2)

where λ denotes the learning rate. Note that the gradient is
computed at the point et = 0, which means that the agent
always computes it’s next exogenous input to the system as-
suming that the current exogenous input is at 0 for all vari-
ables. We additionally constrain the agent to a budget β. If the
sum of the absolute value of the exogenous input is greater
than β the exogenous inputs are clipped to a maximum of β.

Adding limited attention: the sparse-max
hill-climbing model

Certainly, hill-climbing captures some but not all aspects of
human goal-pursuit. In particular, the hill-climbing strategy ig-
nores the increasing cognitive costs posed by limited attention
and memory when an agent focuses on larger sets of endoge-
nous variables at once. The sparse-max operator (Gabaix,
2014) is a psychologically plausible version of the max opera-
tor that takes the trade-off between maximized utility and cost
of attention into account. A sparse solution to the minimiza-
tion problem posed to the hill-climbing agent is to only mini-
mize the distance of the goal and a subset of the endogenous
variables. The sparse-max is a two step process, 1) the agent
chooses an attention vector m ∈ {0,1}Ds that indicates which
subset of the endogenous variables the agent should attend
to, 2) the agent performs hill-climbing by minimizing the dis-
tance between the goal and the chosen subset of endogenous
variables. The choice of m is performed as follows,

argminm d(sm
t+1,g)+ c ·

DS

∑
i=1

mi (3)

where sm
t+1 denote the endogenous state at t + 1 only taking

the active dimensions in m into account and c denotes the
cognitive costs of attending to a variable. Once m is chosen
the hill climbing step can be computed as before but only re-
ducing the distance for the variables active in m.

Null-model
As a third model of goal pursuit we propose a model that
chooses its exogenous input at each timestep as follows:

1. n endogenous variables are selected at random.

2. For each of the chosen endogenous variables s the agent
randomly selects one of the exogenous input variable e that
has an effect on s.

3. Each selected exogenous variable e is given a random input
(within the allowed budget) that adjusts the corresponding
endogenous variable s in the direction of its target value.

This model has one free parameter, namely n.

Performance metric To measure an agent’s performance in
a SMW, we compute it’s average closeness as follows,

cavg =
∑

T
t=1(d(s1,g))−d(st ,g))

T
) (4)

Additionally, we record whether an agent model or participant
has reached it’s goal during the episode.

Model selection and parameter estimation
Assuming that the error ε around the system state that the par-
ticipant intended to reach in each step is normally distributed
(∆∼N (0,σerr)), the likelihood of a participants data D under
a model m with parameters θ is

p(D|m,θ) =
T

∏
t=1

1
σerr

√
2π

exp
(−(∆2

t )

2σ2
err

)
, (5)

where ∆t = ||st+1− f (st ,model(st ;θ))||2 is the Euclidean dis-
tance between the next state the participant reached and the
state that the model’s input model(st ;θ) would have moved
the system to. To estimate the parameters θ and σerr we max-
imize the log likelihood of the data using Bayesian optimiza-
tion.

How do people pursue goals in SMWs?
We developed an interactive SMW game to collect data on
how people pursue goals and to evaluate our models of hu-
man goal pursuit. Using this paradigm we designed an ex-
periment to test whether the standard hill-climbing model can
predict which goals people will achieve and which they will
struggle to pursue effectively.

Stimuli and Procedure
For this experiment we designed a SMW with 4 exogenous
and 5 endogenous variables and embedded it in an interactive
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experiment 1. Participants are told that they are situated on a
far-away planet and that their job is that of an Alien-Farmer.
The task consists of controlling five “farming measures” (the
endogenous variables) using a set of four ”resources” (the ex-
ogenous variables). As we aim to study goal pursuit all the dy-
namics of the system are displayed from the beginning, such
that participants do not have to explore first in order to be able
to plan effectively. Participants are told that across a season
consisting of 20 rounds they have to work towards a goal con-
sisting of target values and ranges for each farming measure
respectively. In the rightmost column the current goal is shown
to participants and in the leftmost column the resources can
be adjusted via slide-bars. The budget β is set to 25 and the
current budget that is still available is displayed on top of the
leftmost column. After a participant decided on an exogenous
input, the next round can be reached via a click on the next
round button.

We constructed 30 situations consisting of initial values for
the farming measures and a goal. These 30 situations were
designed such that the hill-climbing model predicts that par-
ticipants should always achieve the goal in the 10 “Easy” sit-
uations, fail to achieve the goal in the “Medium” situations but
come closer to it, and end up farther away from the goal than
they started out in the 10 “Difficult” situations. The situations
within each level of difficulty were generated by randomly gen-
erating situations and recording the performance of the hill-
climbing agent. The first 10 situations were chosen such that
the hill-climbing agent reaches the goal at least once (by goal
achievement threshold ω and achieves an average closeness
of between 0 and 50. In situations with medium difficulty the
goal was not reached by the agent but the agent achieved
an average closeness of between −20 and 50 . Finally, hard
goals were chosen such that the agent did not reach the goal
and its average closeness was in between −100 and −200.
The experiment was conducted as follows, first participants
were given instructions on how to perform the task, followed
by a training situation with a single easy situation. If the partic-
ipants managed to reach the goal at least once in this training
situation they were randomly allocated to one out of the 30 test
situations. Participants could earn a performance dependent
bonus in the test situation.

Participants
We recruited 215 participants via the online platform Positly
2. In total 43 of participants were allocated to the easy situa-
tions, 84 to the medium difficulty situations and 88 to the hard
situations.

Results
Consistent with the predictions of the hill-climbing model, most
people were able to achieve goals in the easy category but
only very few goals are reached in the medium and hard cate-
gories (see Figure 2). Furthermore, as shown in Figure 1, both

1We host a trial version of our goal pursuit task at
http://goal-setting-experiments.herokuapp.com/demo

2https://www.positly.com/
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Figure 1: Average closeness of humans and hill-climbing
agent with a learning rate of 1.
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Figure 2: Goal achievement humans and hill-climbing agent
with a learning rate of 1.

hill-climbing and human average closeness are significantly
lower in the medium category compared to the easy category
(human: t = 7.59, p < .001; model: t = 4.65437, p < .001).
However, while the hill climbing model performs significantly
worse (t = 37.76, p < .001) in the hard category compared to
the medium category, humans do not show such a large drop
in performance (t = 0.23, p = .815). This highlights that while
the hill-climbing model can capture some important aspects of
human goal-pursuit, it remains incomplete.

As shown in Table 1, the choices of the sparse-max model
and people showed robust performance in the difficult situ-
ations in which the hill-climbing agent moved away from the
goal. This might be because – unlike the hill-climbing model
– both people and the sparse-max model have limited atten-
tional resources that they preferentially allocate to the most
helpful information. This might have allowed both people and
the sparse-max model to ignore the misleading lures that led
the hill-climbing model astray in the difficult situations. Our
model selection results confirmed that the sparse-max model
captured people’s goal pursuit in difficult situations more accu-
rately than the basic hill-climbing model (see Table 1). These
findings suggest that taking into account the rational use of
limited attention is critical for understanding human goal pur-
suit.

Which model explains people’s goal pursuit strategies
best? After fitting each model to each participant, we per-
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Easy Medium Hard
hill-climbing -8.49 vs. 24.09 (N = 39) -47.33 vs. 22.15 (N=83) -285.09 vs. -119.87 (N =19)
sparse-max 24.9 vs. -9.96 (N=4) -39.7 vs. 36.51 (N=1) 16.20 vs. 15.34 (N=69)

Table 1: Average closeness of humans vs. models in the 3 difficulty categories. The results are grouped depending on the model
that best explains the respective participant’s data.

formed model selection according to Akaike’s information cri-
terion (AIC). We found that 141 participant’s data was best
explained by the hill-climbing model, 74 participant’s data was
best explained by sparse-max hill-climbing and 0 participants
data was best explained by the Null-model.

How well do the selected models fit the participants’
data? To evaluate how well the fitted models explain par-
ticipant’s trajectories in the SMW we devised a metric that
is similar to the proportion of explained variance. At a given
timestep t we measured how much of the change in position
is explained by the model as follows,

F(t) =
||st+1− st ||2−|| f (st ,model(st ;θ))− st+1||2

||st+1− st ||2
(6)

For each participant we computed F̄ which is the average over
all F(t). We found that for 125 of the 215 participants, we find
that F̄ was larger than 0. For these participants, the best fit-
ting model explained about 18%±1% of the variance in their
state sequences on average. This suggests that our model
can successfully explain a notable portion of participant’s tra-
jectories. However, it also shows that for a large subgroup of
participants (90/215) our models were unable to explain their
goal pursuit strategies. Table 1 compares the performance
of participants to the performance of the model that best ex-
plained their behavior.

Qualitative predictions Previously, when comparing partic-
ipants’ performance to the hill-climbing model that was used to
generate the situation, we found that participants in the hard
category did not perform as poorly as the model did 1. In the
third column of Table 1 this gap is explained by the fact that
for 69 out of 88 participants in the hard category the sparse-
max model was the best fitting model whereas for another 19
the hill-climbing model was the best model. The sparse-max
model performs as well as people with an average closeness
of 15.34 compared to the 16.2 of the people.

One specific prediction the sparse-max model makes is that
given a nonzero cost parameter the best input might not take
all endogenous variables into account. For the participants
best explained by the sparse-max model we compared the av-
erage number of exogenous inputs that was set to a non-zero
number to the quantity that the sparse-max model predicts. In
Figure 3 we show that the sparse-max model indeed captures
the fact that most participant’s used only a small subset of the
exogenous inputs at each timestep. The hill-climbing model,
by contrast, would have manipulated an average of 3.92 of the
4 inputs on each step of those participants’ problems.
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Figure 3: The average number of modified exogenous inputs
of the participants for which the sparse-max model had the
best fit.

Discussion
Based on Simulated Microwrolds we designed a new interac-
tive experimental model how humans pursue goals in com-
plex control tasks. Additionally, we introduced two models
of human goal pursuit: the first model performs hill-climbing,
and the second model additionally accounts for people’s lim-
ited attention. We found that the hill-climbing model correctly
predicted which goals people achieve and which they fail to
achieve. However, people’s performance was robust to goals
that would have led the standard hill-climbing model astray.
This discrepancy could be reconciled by taking into account
that peoples’ attentional resources are limited. The limited
number of inputs variables that participants’ modified on each
trial provided additional support for people’s limited attentional
resources. Future work will leverage these insights to inves-
tigate which sub-goals are most effective at helping people
achieve challenging goals in complex environments.
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