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Abstract
Birds of the crow family are well known for their com-
plex cognition. In laboratory experiments it has been ob-
served that jays adapt food caching strategies to antic-
ipated needs and rely on a memory of the what, where
and when of previous caching events for cache recovery.
While this behaviour is well studied, little is known about
the algorithms and neural processes that produce this be-
haviour. We present a computational model and propose
a neural implementation of food caching behaviour. Our
model features latent hunger variables for motivational
control, an associative memory for snapshots of the sen-
sory states during caching events, a system memory
consolidation for flexible decoding of the age of a mem-
ory, a stimulus-driven retrieval mechanism, and reward-
modulated update of retrieval and caching policies dur-
ing inspection of caches. We show that our model is in
quantitative agreement with the results of 22 behavioural
experiments. Our methodology of a formalization of ex-
perimental protocols via a domain-specific language is
transferable to other domains and may serve as a tool
to design new experiments and foster collaboration be-
tween experimentalists and theoreticians. Our model is
an example of a structured reinforcement learning algo-
rithm that could have evolved in species that operate in
partially observable environments.
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Introduction
Birds of the crow family (corvidae) have been proposed as
animal models for human cognitive neuroscience, because of
their remarkably complex cognition (Clayton & Emery, 2015).
In the wild, nutcrackers and jays are famous for caching
acorns, nuts or pine seeds but also perishable items like in-
sects and scraps of meat in thousands of small cracks or
in loose soil, for hours, days or months. Recovery of their
own caches is highly probable (50 − 99 %), clearly depen-
dent on visual cues, independent of olfactory cues and un-
likely to be explained by random search at preferred loca-
tions (Vander Wall, 1990). In laboratory experiments, jays
were found to rely on episodic-like memories to retrieve from
the most promising cache sites (Clayton & Dickinson, 1998,
1999a, 1999c, 1999b; de Kort, Dickinson, & Clayton, 2005)
and adapt their caching strategy to anticipated future needs:
jays decrease the amount of cached food items at sites where

food was abundantly available (Raby, Alexis, Dickinson, &
Clayton, 2007; Correia, Dickinson, & Clayton, 2007; Cheke &
Clayton, 2011) or where they experienced pilfering or degra-
dation of the cached food items (Clayton, Dally, Gilbert, &
Dickinson, 2005; de Kort, Correia, Alexis, Dickinson, & Clay-
ton, 2007).

The interpretation of these results is controversial. On
one side, they have been interpreted as evidence for ‘men-
tal time travel’ in animals (Raby et al., 2007; Correia et al.,
2007; Cheke & Clayton, 2011), challenging, first, the hypoth-
esis that this ability to ‘re-experience’ the personal past and
‘pre-experience’ a potential personal future is uniquely hu-
man (Suddendorf & Corballis, 2007) and, second, the Bischof-
Köhler hypothesis that animals’ apparently future-oriented ac-
tions are driven only by current needs (Suddendorf & Corbal-
lis, 1997). On the other side, a mnemonic-associative account
has been formulated that explains this behaviour with a re-
evaluation of previous actions at the time of cache recovery
(Clayton et al., 2005; Dickinson, 2011).

We want to shed light on this controversy with a computa-
tional model. From a traditional computational neuroscience
perspective the question is, whether the birds’ food caching
behaviour can or cannot be explained with standard concepts
like model-free reinforcement learning with reward-modulated
synaptic plasticity and Hopfield-network-like associative mem-
ories (Brea & Gerstner, 2016).

Methods
All considered experiments investigate the caching and cache
recovery behaviour of a single jay. A typical experiment pro-
ceeds as follows. 1) A few hours of food deprivation raise the
motivation of the bird. 2) The experimenter adds some food
items and caching trays at specific positions in the bird’s cage
and waits for a short interval. 3) The caching trays and re-
maining food items are removed and counted. 4) While trays
are outside the cage, the experimenter may or may not re-
move (‘pilfer’) or degrade the food items cached in some of
the trays. 5) After some waiting interval, the caching trays are
returned to the cage and the number of times the bird inspects
the returned trays inspections are counted during a recovery
interval. 6) After another waiting period, steps 2–5 are re-
peated with some variations.

We formalized all experimental protocols using actions
ADD, REMOVE, WAIT, DEGRADE, PILFER, COUNT ITEMS

and (UN)COVER TRAY, that operate on objects of type
CachingTray, InspectionObserver and FoodItem. A full
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experimental protocol is a function that takes as input mod-
els parametrized by θE and returns a summary of observed
quantities ŜE(θE).

For each experiment E we extracted a result summary SE
that consists of at least 5 (Raby07 planning) and at most
212 (Clayton99B exp1) observed quantities, collected from
figures and text of the respective publications, e.g. ANOVA
tests and means and variances of the number of cached
items. Since we do not have analytical expressions for the
likelihood function of our model parameters, we resorted to
likelihood-free methods (Gutmann & Corander, 2016), i.e. we
searched by repetitive simulation of each experiment for θE
that maximizes the probability P(∆(SE , ŜE(θE)) < ε) of the
difference ∆(SE , ŜE(θE)) between experimental SE and simu-
lated ŜE(θE) results being smaller than bandwidth ε. To find
approximately the maximum likelihood estimate, we used a
differential evolution optimizer (Fendt, 2017).

Results

Description of the model

We propose a memory-augmented reinforcement learning
model in continuous time to describe caching behaviour. The
model’s internal state consists of 1) hunger variables, 2) an
associative memory of caching events and 3) weights that in-
fluence the caching and the retrieval preference (Fig. 1).

Action selection. As soon as food items or caching trays
are available the model bird chooses between immediate eat-
ing of a food item, caching a food item in one of the available
trays, inspection of a tray or doing something else. Action i
is sampled with probability pi/∑ j p j, where pi is a hunger
modulated preference of action i. Each action is followed by
a random timeout interval. The preference to immediately eat
a certain food item depends on its type. To choose what to
cache where, the model birds compute caching preferences
that depend though plastic weights on cache site features and
food type. When caching trays are available, the model bird
may inspect them. Available trays can trigger the recall of a
snapshot memory, if a tray’s features coincide with remem-
bered features. The preference to inspect a given tray is high
when items of the associated food type are desirable at the
current state of hunger and expected to be palatable at the
current age of the memory.

Dynamics of hunger variables and associative memory.
We model hunger with multiple variables to capture specific
satiety. Eating one type of food with a high fat concentration,
may decrease the first hunger variable more than the second
one, whereas another type of food with a high protein con-
centration, decreases the second variable more than the first
one. At the moment when a food item is cached, a snapshot is
taken which associates the features of the cache site (where)
with the food types (what) of items cached at this position.
Through system memory consolidation (Sekeres, Winocur, &
Moscovitch, 2018), each snapshot moves over time to other
regions in the brain, which allows a flexible readout of the age
of a memory (when). Items are removed from memory when
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Figure 1: The model. Given the visual input, the model bird
identifies the presence of food items of certain food types
and the locations of cache sites with certain cache site fea-
tures. Once a food item and a putative cache site is identified,
the bird compares the caching preference with its desire to
immediately consume the food item, where both preferences
are modulated by the current state of hunger, and selects
an action thereafter. If the bird decides to cache the food
item, an association of cache site features and food types (bi-
directional arrows) gets stored in an associative memory;
the content of this memory undergoes system consolida-
tion, i.e. over the course of days and weeks the memory
contents are moved to other locations in the brain (depicted
as multiple discs). Cache site features can trigger the asso-
ciative recall of food items. Its retrieval preference will de-
pend on the age of the memory that can be decoded from
its current state of consolidation. After a retrieval attempt,
the retrieval weights (red arrows) and caching preference
weights (orange arrows) are updated in a way that depends
on whether a palatable food item could be retrieved or not.

the last item in a cache gets recovered or the cache is found
empty. We do not discretize time but respect in all experimen-
tal protocols the actual durations and integrate the dynamics
with an event-based numerical integrator.

Reinforcement learning of weights. The update of the
caching and retrieval weights follows a multi-factor Hebbian
learning rule d

dt wi j = M · e(posti,pre j), where e is an eligibil-
ity trace on the timescale of seconds, triggered by pre- and
postsynaptic activity, and M is a modulating factor that de-
pends on the outcome of cache inspection. Because asso-
ciative recall of snapshot memories reactivates the relevant
pre- and postsynaptic neurons, this standard reward modu-
lated rule enables delayed reinforcement learning of weights
that determined caching decisions potentially long ago. If in-
spection leads to successful recovery of a fresh and desirable
food item, the preference to cache at sites with similar fea-
tures increase. If the bird unexpectedly recovers a degraded
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Figure 2: The experimental results are considerably more probable under the full model with hunger dynamics and
delayed reinforcement learning than under simpler models. A Example results. Experimental data (middle column) and
results of the full model are shown with solid lines, results of a simpler model with dashed lines; left column: average mean and
average standard deviation over 1000 simulated repetitions of the same experiment; right column: closest simulated result to
experimental data out of 1000 simulations. B For each experiment, the probability of reaching the same conclusion as in the
experiments was computed as the fraction of simulations that had the same significance levels (α = 0.05) on the most relevant
statistical tests reported in each study. The experiment “deKort07 exp1” was a control experiment that does not require any
memory or learning. The simple model reaches also similar levels as the more complex models for experiments “Clayton99C
exp2/exp3” because of a between group design. For most other experiments that test specific satiety, model Mspecsat is on the
same level as the full model and better than the simple model Msimple. On all other experiments the full model reaches the same
conclusion as the experiments with a higher probability.

food item, the palatability of this type of food is lowered for
the given age of memory and the preference to cache at sites
with similar features is lowered. If no food item can be recov-
ered, e.g. because the cache site got pilfered, but the bird has
a snapshot memory for the current cache site features, the
preference to cache at sites with these features is lowered.
Additionally, the preference to cache a certain type of food at
a certain location decreases in places where it is abundant,
for example there is no need to cache pine seeds on a pine
tree.

Simulation results

We compared our full model to two simpler versions. The sim-
plest model Msimple has food-type-independent, fixed prefer-
ences for immediate eating, caching, retrieval and other ac-
tions, but no hunger modulation or memory. The second
model Mspecsat has a food-type-specific policy and hunger
modulation, but no associative memory and no update of the
caching preference weights (red arrow in Fig. 1). Each model
was fitted to each experiment. We find that the specific satiety
model Mspecsat suffices to reproduce with a high probability

the findings of experiments that test only specific satiety, but
for experiments that test cache recovery or adaptation to fu-
ture needs the full model has a higher probability of reaching
the same conclusions as the ones reported in the experimen-
tal papers (Fig. 2).

Discussion
We developed a memory-augmented reinforcement learning
model in continuous time, where action selection and reward
signals in simulated birds depend on motivational states in
form of hunger variables and a list of snapshot memories that
associate the location and food items of past caching events.
We found that both the motivational state and the snapshot
memories are necessary to reach a high probability of explain-
ing the observed experimental data across all experiments.

To simulate the experiments, we expressed them in a
domain-specific, model-independent formal language. This
approach should not only simplify model comparison but also
ease the communication between experimentalists and theo-
reticians and help designing new experiments.

The snapshot memory in our model could be implemented
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with an associative neural network (Hopfield, 1982), where
special care would need to be given to readout for cache re-
trieval and deletion of memories after emptying a cache. The
reinforcement learning rule to update caching preferences
could be implemented with synaptic plasticity rules, where
neuromodulators signal the condition at retrieval (Gerstner,
Lehmann, Liakoni, Corneil, & Brea, 2018). There is no need
to maintain an explicit long synaptic eligibility trace over days
for our reinforcement learning rule, since eligibility is mediated
by the associative recall of snapshot memories.

The model presented here is a reinforcement learning
model with structured state representation and memory to
cope with partial observability. The state is factored into vi-
sual input, hunger variables and memory state. The hunger
variables account for motivational effects in a similar way as
e.g. proposed by (Niv, Joel, & Dayan, 2006). Read and write
access to memory is specialized to the task of caching. Rein-
forcement learning models with more flexible forms of explicit
memory (e.g. (Graves et al., 2016)) would eventually also
learn to cache and retrieve efficiently, but would potentially re-
quire many more caching-retrieval events until they reach high
efficiency. It is not unlikely that evolution has led to highly spe-
cialized memory systems given that the caching behaviour of
juvenile birds starts already at 6 weeks of age (Stotz & Balda,
1995). In our model, the retrieval of snapshot-memories is
unidirectional in that cache site features are exclusively used
as keys to find the associated food items but currently desired
food items are never used as keys to search for associated
cache site features.

Our model belongs in the class of model-free reinforcement
learning, since the simulated birds do not learn the transition
structure of the environment (Sutton & Barto, 2018). The sim-
ulated birds are memory-augmented stimulus-response ma-
chines that do not perform any offline planning or imagina-
tion of what it could be like in an alternative situation than
the currently perceived one. While the associative recall of
food items might be interpreted as a first step towards mental
time travel, it is implemented here as a simple pattern com-
pletion. Our model is similar to the mnemonic-associative ac-
count (Dickinson, 2011), where policies are updated at the
time of cache recovery. We conclude that traditional concepts
of computational neuroscience are sufficient to explain these
experiments on food caching behaviour in birds, but new ex-
periments might falsify our model by providing unequivocal ev-
idence for mental time travel or more flexible memory usage.
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